We give an algorithm to compute the modular degree of an elliptic curve defined over . Our method is based on the computation of the special value at of the symmetric square of the -function attached to the elliptic curve. This method is quite efficient and easy to implement.
Nous donnons un algorithme pour calculer le degré modulaire d’une courbe elliptique définie sur . Notre méthode est basée sur le calcul de la valeur spéciale en du carré symétrique de la fonction attachée à la courbe elliptique. Cette méthode est assez efficace et facile à implémenter.
@article{JTNB_2003__15_3_673_0,
author = {Delaunay, Christophe},
title = {Computing modular degrees using $L$-functions},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {673--682},
year = {2003},
publisher = {Universit\'e Bordeaux I},
volume = {15},
number = {3},
mrnumber = {2142230},
zbl = {1070.11021},
language = {en},
url = {https://www.numdam.org/item/JTNB_2003__15_3_673_0/}
}
TY - JOUR AU - Delaunay, Christophe TI - Computing modular degrees using $L$-functions JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 673 EP - 682 VL - 15 IS - 3 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_2003__15_3_673_0/ LA - en ID - JTNB_2003__15_3_673_0 ER -
Delaunay, Christophe. Computing modular degrees using $L$-functions. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 3, pp. 673-682. https://www.numdam.org/item/JTNB_2003__15_3_673_0/
[1] , , Hecke operators on Γ0(m). Math. Ann. 185 (1970), 134-160. | Zbl | MR | EuDML
[2] , , Twists of newforms and pseudo-eigenvalues of W-operators. Invent. Math. 48 (1978), 221-243. | Zbl | MR | EuDML
[3] , , , , On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 no. 4 (2001), 843-939. (electronic). | Zbl | MR
[4] , , Iwasawa theory for the symmetric square of an elliptic curve. J. reine angew. Math. 375 (1987), 104-156. | Zbl | MR | EuDML
[5] , Advanced topics in computational algebraic number theory. Graduate Texts in Mathematics, 193, Springer-Verlag, New-York, 2000. | Zbl | MR
[6] , Algorithms for modular elliptic curves. Second edition, Cambridge University Press, 1997. | Zbl | MR
[7] , Computing the degree of the modular parametrization of a modular elliptic curve. Math. Comp. 64 (1995), 1235-1250. | Zbl | MR
[8] , , , An effective zero-free region. Ann. of Math. (2) 140 no. 1 (1994), 177-181. | Zbl | MR
[9] , , , , , pari-gp, available by anonymous ftp.
[10] , The special values of the zeta functions associated with cusp forms. Com. Pure Appl. Math. 29 (1976), 783-804. | Zbl | MR
[11] , , Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 no. 3 (1995), 553-572. | Zbl | MR
[12] , Zeros of Dedekind zeta functions in the critical strip. Math. Comp. 66 (1997), 1295-1321. | Zbl | MR
[13] , Computing the modular degree of an elliptic curve. Experimental Maths 11 no. 4 (2003), 487-502. | Zbl | MR
[14] , Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 no. 3 (1995), 443-551. | Zbl | MR
[15] , Modular parametrizations of elliptic curves. Canad. Math. Bull. 28 no. 3 (1985), 372-384. | Zbl | MR





