@incollection{AST_1980__75-76__141_0,
author = {Jakubczyk, Bronislaw},
title = {Existence and uniqueness of nonlinear realizations},
booktitle = {Analyse des syst\`emes},
series = {Ast\'erisque},
pages = {141--147},
year = {1980},
publisher = {Soci\'et\'e math\'ematique de France},
number = {75-76},
mrnumber = {581711},
zbl = {0459.93018},
language = {en},
url = {https://www.numdam.org/item/AST_1980__75-76__141_0/}
}
TY - CHAP AU - Jakubczyk, Bronislaw TI - Existence and uniqueness of nonlinear realizations BT - Analyse des systèmes AU - Collectif T3 - Astérisque PY - 1980 SP - 141 EP - 147 IS - 75-76 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1980__75-76__141_0/ LA - en ID - AST_1980__75-76__141_0 ER -
Jakubczyk, Bronislaw. Existence and uniqueness of nonlinear realizations, dans Analyse des systèmes, Astérisque, no. 75-76 (1980), pp. 141-147. https://www.numdam.org/item/AST_1980__75-76__141_0/
[1] .- Volterra series and geometric control theory. Automatica 12 (1976), 167-176. | MR | Zbl | DOI
[2] . - Realizations of stationary finite Volterra series. These proceedings.
[3] , , . - Realization and structure theory of bilinear dynamical systems. SIAM J. Control, Vol.12, n°3 (1974). | MR | Zbl | DOI
[4] , .- Nonlinear controllability and observability. IEEE Trans. Automatic Control, Vol.22, n°5 (1977). | MR | Zbl | DOI
[5] . - Existence and uniqueness of realizations of nonlinear systems. Preprint, Warszawa 1978.
[6] , , . - Topics in Mathematical System Theory. New-York 1969. | MR | Zbl
[7] .- Dynamical polysystems and control theory. In "Geometric methods", Proc. Conf. London 1973. | Zbl
[8] .- Minimal realizations of nonlinear systems. In "Geometric methods", Proc. Conf. London 1973. | Zbl
[9] . - Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180 (1973), 171-188. | MR | Zbl | DOI
[10] . - Existence and uniqueness of minimal realizations of nonlinear systems. Math. Syst. Theory 10 (1977), 263-284. | MR | Zbl | DOI
[11] . - A generalization of closed subgroup theorem to quotients of arbitrary manifolds. J. Diff. Geom. 10 (1975), 151-166. | MR | Zbl | DOI







