When an endomorphism of a projective variety which is polarized by an ample line bundle , i.e. such that with , is defined over a number field, Call and Silverman defined a canonical height for . In a family parametrized by a curve together with a section , they show that converges to the height on the generic fiber.
In the present paper, we prove the equivalent statement when studying the variation of canonical heights of subvarieties varying in a family of any relative dimension.
Pour un endomorphisme d’une variété projective qui est polarisé par un fibré en droites ample , i.e. tel que avec , et qui est défini sur un corps de nombres, Call et Silverman ont défini une fonction hauteur canonique . Dans une famille paramétrée par une courbe munie d’une section , ils prouvent également que converge vers la hauteur canonique sur la fibre générique.
Dans cet article, nous étudions les variations en famille de la hauteur canonique de sous-variétés et nous démontrons un énoncé équivalent en toute dimension relative.
Révisé le :
Accepté le :
Publié le :
Keywords: Canonical height, families of polarized endomorphisms, bifurcations
Gauthier, Thomas  1 ; Vigny, Gabriel  2
CC-BY-ND 4.0
@article{JTNB_2024__36_3_1123_0,
author = {Gauthier, Thomas and Vigny, Gabriel},
title = {Variation of canonical heights of subvarieties for polarized endomorphisms},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {1123--1135},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1310},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1310/}
}
TY - JOUR AU - Gauthier, Thomas AU - Vigny, Gabriel TI - Variation of canonical heights of subvarieties for polarized endomorphisms JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1123 EP - 1135 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1310/ DO - 10.5802/jtnb.1310 LA - en ID - JTNB_2024__36_3_1123_0 ER -
%0 Journal Article %A Gauthier, Thomas %A Vigny, Gabriel %T Variation of canonical heights of subvarieties for polarized endomorphisms %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1123-1135 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1310/ %R 10.5802/jtnb.1310 %G en %F JTNB_2024__36_3_1123_0
Gauthier, Thomas; Vigny, Gabriel. Variation of canonical heights of subvarieties for polarized endomorphisms. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1123-1135. doi: 10.5802/jtnb.1310
[1] Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of , Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 1, pp. 215-262 | DOI | MR | Zbl
[2] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 125 pages | MR | Zbl
[3] Canonical heights on varieties with morphisms, Compos. Math., Volume 89 (1993) no. 2, pp. 163-205 | MR | Numdam | Zbl
[4] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | MR | Zbl
[5] Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemporary Mathematics), Volume 67, American Mathematical Society, 1985, pp. 93-177 | DOI | MR
[6] Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., Volume 8 (2001) no. 1-2, pp. 57-66 | DOI | MR | Zbl
[7] Continuity of the Green function in meromorphic families of polynomials, Algebra Number Theory, Volume 12 (2018) no. 6, pp. 1471-1487 | DOI | MR | Zbl
[8] The Geometric Dynamical Northcott and Bogomolov Properties (2019) (to appear in Ann. Sci. Éc. Norm. Supér.) | arXiv
[9] Variation of the canonical height for a family of polynomials, J. Reine Angew. Math., Volume 685 (2013), pp. 73-97 | MR | Zbl
[10] Variation of the canonical height in a family of polarized dynamical systems (2021) | arXiv
[11] Explicit canonical heights for divisors relative to endomorphisms of , Matematica, Volume 3 (2024) no. 4, pp. 1456-1485 | Zbl | DOI | MR
[12] Fundamentals of Diophantine geometry, Springer, 1983, xviii+370 pages | DOI | MR
[13] Investigation of the stability of the dynamics of rational functions, Teor. Funkts., Funkts. Anal. Prilozh., Volume 42 (1984), pp. 72-91 translated in Sel. Math. Sov. 9 (1990), no. 1, p. 69–90 | MR | Zbl
[14] On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér. (4), Volume 16 (1983) no. 2, pp. 193-217 | Numdam | DOI | MR | Zbl
[15] Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl
[16] Variation of the canonical height of a point depending on a parameter, Am. J. Math., Volume 105 (1983) no. 1, pp. 287-294 | DOI | MR | Zbl
[17] Adelic line bundles over quasi-projective varieties (2021) | arXiv
[18] Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | Zbl | MR
[19] Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X (Surveys in Differential Geometry), Volume 10, International Press, 2006, pp. 381-430 | DOI | Zbl
Cité par Sources :





