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Variation of canonical heights of subvarieties for
polarized endomorphisms

par THOMAS GAUTHIER et GABRIEL VIGNY

RESUME. Pour un endomorphisme f : X — X d’une variété projective qui
est polarisé par un fibré en droites ample L, i.e. tel que f*L ~ L®? avec
d > 2, et qui est défini sur un corps de nombres, Call et Silverman ont défini
une fonction hauteur canonique ﬁf. Dans une famille (X, f, £) paramétrée
par une courbe S munie d’une section P : S — X, ils prouvent également
que h 1, (P(t))/h(t) converge vers la hauteur canonique ﬁfn (P,) sur la fibre
générique.

Dans cet article, nous étudions les variations en famille de la hauteur cano-
nique de sous-variétés Y; et nous démontrons un énoncé équivalent en toute
dimension relative.

ABSTRACT. When an endomorphism f : X — X of a projective variety which
is polarized by an ample line bundle L, i.e. such that f*L ~ L®¢ with d > 2,
is defined over a number field, Call and Silverman defined a canonical height
h ¢ for f. In a family (X, f, L) parametrized by a curve S together with a
section P : § — X, they show that Eft (P(t))/h(t) converges to the height
Efn (P,) on the generic fiber.

In the present paper, we prove the equivalent statement when studying the
variation of canonical heights of subvarieties Y; varying in a family ) of any
relative dimension.

1. Introduction

A family (X, f, £) of polarized endomorphisms parametrized by a smooth
projective curve S over a field k of characteristic 0 is a family 7 : X — S
of projective k-varieties which is flat over a Zariski open subset S° of S
and such that X is smooth, a rational map f : X --» X which is regular
over SO and a relatively ample line bundle £ on X, such that for each
t € SO if X; := m~1{t} is the fiber of 7 over ¢, L; := L|x, and f; := f|x,,
then (X, ft, Lt) is a polarized endomorphism, i.e. there is an integer d > 2
such that f;L; ~ L¥? When S and (X, f,£) are defined over a number
field K, given a parameter t € S°(Q), one want to relate the arithmetic
complexity of ¢, the dynamical complexity of the corresponding map f;
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and the dynamical complexity of the family f. This can be done using the
theory of heights.
For a polarized endomorphism (X, f, L) defined over a product formula

field K, let hx 1, be the standard Weil height function on X (K), relative to

L. Call and Silverman [3] defined the canonical height ?Lf : X(K) — Ry of
the endomorphism f as

hy = nh_}n(%o dinthL o f™

Assume that X is defined over the function field of characteristic zero K :=
K(S) where K is a number field and S is a smooth projective K-curve. To
the polarized endomorphism (X, f, L) we associate a model (X, f, L) over
S, i.e. a family of polarized endomorphisms (X, f, £) parametrized by S
such that, if n is the generic point of S, then (X,f,L) is isomorphic to
(X, fn, Ly) where X, is the generic fiber of 7 : & — S, f; := f|x, and
Ly, = Llx,.

Endow S with an ample Q-line bundle and take P € X (K), P can be
thought of as a function S — X. In that setting, we have the canoni-
cal height h f,(P;) which describes the arithmetic complexity of the orbit
Orby, (P) = (f}'(Py))n over K(S) and, given a parameter t € Q, the naive
height hg(t) which describes the arithmetic complexity of ¢, and the canon-
ical height h, (P(t)) which describes the arithmetic complexity of the orbit
Orby, (P(t)) = (ff*(P(t))n over Q. In that setting, Call and Silverman |3,
Theorem 4.1] proved

hy (P(t)  ~

(1.1) lim — by, (Py)-

hs(t)—oc0 hs(t)

t€S°(Q)
In the particular case where X = P!(K) and f is a polynomial map, In-
gram [9] improved (1.1) by showing there is an effective Q-divisor D(f, P)
on S of degree /ﬁf"(Pn) such that /ﬁft(P(t)) = hp(s,p)(t) + O ps(1) (see
also Tate [16] for the case of families of elliptic curves) and finally the first
author and Favre showed in [7] that the height function & 7 (P(t)) is in-
duced by a continuous adelic metrization of the line bundle O(D(f, P)).
Very recently, Ingram also improved (1.1) in [10] saving a power in the
error term.

Nevertheless, when the relative dimension of X is at least 2, it can be
useful to consider the canonical height of fibers of a subvariety YV C X
with m()) = S of positive relative dimension. Indeed, generalizing the 1-
dimensional theory [14, 13], Berteloot, Bianchi and Dupont [1] showed that
bifurcations in a complex family of endomorphisms of the projective space
P* are caused by the unstability of the critical set (which has codimen-
sion 1), and the authors of op. cit., following DeMarco [6] in dimension 1,
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defined a bifurcation current which gives a measurable meaning to bifur-
cations. The authors showed in [8] that, in the case of an algebraic family
of endomorphisms of the projective space P, the mass of this current is
actually the canonical height of the critical divisor.

Here is the main result of this article.

Main Theorem. Let (X, f,L) be a family of polarized endomorphisms
over S and let Y C X be an irreducible subvariety such that 7(Y) =S, all
defined over a number field K. For any Q-ample height hg on S of degree 1,
we have

 hp (V)
1 = =hs (Y,
hs(i)niwo hS(t) fn( 7])7

te€S%(Q)

where Sg, be the maximal Zariski open subset of S° over which =y is flat
and projective.

Ingram [11] proved this result when Y = Crit(f) is the critical locus of
the family f using a different description of the height of a divisor and
explicit local estimates.

As an application, observe that if D 7, (Yy) # 0, then, for any integer n, the

set of parameters t € S°(K) such that & 7,(Yz) = 0, where K is an algebraic
extension of Q with [K : Q] < n, is finite by the Northcott property. Note
that the preperiodicity of ¥; implies A 7 (Y2) = 0 (see e.g. [19]). Recall that
an endomorphism f; of P¥ is post-critically finite (PCF for short) if the
critical set is preperiodic, i.e. if there are integers n > m > 0 such that
fi(Crit(fr)) C f™(Crit(f;)). The Main Theorem above shows that, when
Y = Crit(f) is the critical set of a family f of endomorphisms of P¥ with
h 7,(Yn) # 0 (which means the family is unstable), there are only finitely
many post-critically finite (PCF for short) maps on a given extension of Q.

Heights can be seen in two different and entangled fashions: by working at
all places which can often gives precise estimates and by the mean of arith-
metic or algebraic intersection theory which is more intrinsic and allows
cohomological arguments. The philosophy of this article is to rely as much
as possible on the latter. Our first contribution is a comparison of the naive
height and the canonical height in families directly using [3] for sections
and using intersection theory for subvarieties of positive relative dimension
(see Proposition 4.1). In a second time, using the exposition [17] of Yuan
and Zhang of the Deligne pairing [5] of metrized line bundles we deduce
the Main Theorem from Proposition 4.1 and from the quasi-equivalence of
ample heights on curves.
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2. The canonical height over a number field

2.1. Adelic metrics and their height functions. Let X be a projec-
tive variety of dimension k, and let Lo, ..., Ly be Q-line bundles on X, all
defined over a number field K. Assume L; is equipped with an adelic con-
tinuous metric {|| - ||y; }vers, and denote L; := (Li, {|| - ||v }vens ). Assume
L; is semi-positive for 1 < i < k. Fix a place v € Mg. Denote by X" the
Berkovich analytification of X at the place v. We also let c¢1(L;), be the
curvature form of the metric || - ||,; on L3".

For any closed subvariety Y of dimension ¢ of X, the arithmetic inter-
section number (Lg - - Ly4|Y) is symmetric and multilinear with respect to
the L;’s. As observed by Chambert-Loir [4], we can define (Lg--- L,|Y)

inductively by
(o LlY) = (Br-+- Lyl div(s) N )

q

+ 3 [ dogllslt A el

vE Mg 7j=1

for any global section s € H°(X, Lg) such that the intersection div(s) NY
is proper. In particular, if Lg is the trivial bundle and || - |,,0 is the trivial
metric at all places but vy, this gives

vo

q
(Lo -+~ Ly|Y) = nug Lan 10g||5||50170 /\ c1(Li) v,
j=1

When L is a big and nef Q-line bundle endowed with a semi-positive contin-
uous adelic metric and Lly is still big, following Zhang [18], we can define
hz(Y) as

(EQ-FI‘Y)
hg(Y) := )
(¢ +1)[K: Q] degy (L)
where degy (L) = (L}y)? is the volume of the line bundle L restricted to Y.

2.2. Canonical height over a number field. Let X be a projective
variety of dimension k, let f : X — X be a morphism and let L be an
ample line bundle on X, all defined over a number field K. Recall that we
say (X,f, L) is a polarized endomorphism of degree d > 1 if f*L ~ L® i.e.
f*L is linearly equivalent to L®.

It is known that polarized endomorphisms defined over the field K admit
a canonical metric. This is an adelic semi-positive continuous metric on
L, which can be built as follows: let 2" — Spec(0k) be an Og-model
of X and .Z be a model of L endowed with a model metric, for example
L = 1*Opn (1), where ¢ : X < PV is an embedding inducing L and Opn (1)
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is endowed with its naive metrization. We then define L 7 as

_ 1
Ly:= nlg%o d—(f )L k.
This metrization induces the canonical height h ¢ of f: for any closed point
z € X(Q) and any section o € H°(X, L) which does not vanish at x, we let

vEMK y€O(x)

where z € X(K), O(x) is the Galois orbit of z in X. The function }\Lf :
X(Q) — R satisfies ﬁf of =d- ﬁf, ?Lf > 0 and Ef(x) = 0 if and only if
x is preperiodic under iteration of f, i.e. if there is n > m > 0 such that
f™(x) = f™(z). Note that iALf can also be defined as

() = Jim b n(F7()),

where hx 1, is any Weil height function on X associated with the ample line
bundle L.

3. The canonical height over a function field of characteristic
zero

We now focus on the dynamical setting: let w# : X — S be a family of
complex projective varieties, where X is a smooth projective variety and
S is a smooth complex projective curve, and let £ be a nef and relatively
ample line bundle on X. We let f : X --» X be a rational map such that
(X, f,L) is a family of polarized endomorphisms of degree d > 2, with
regular part SY, i.e. for all t € S9(C), X; := 7~ {t} is smooth, L; := L|x,
is ample and f;L; ~ LP%

Let ) C X be a proper subvariety of X’ of dimension g+1 with 7())) = S.
Let Sg, be the maximal Zariski open subset of SY such that the restriction
mly : Y — S of 7 is flat over S. We denote by )° and X the regular parts
V0= 7r|371(58,) and X0 := 71'_1(55);).

Let w be a smooth positive form representing the first Chern class ¢1(£)
on X. As f*L ~ £ on X0, there is a smooth function g : X% — R such
that d~' f*w = w + ddg as forms on XV. In particular, the following limit
exists as a closed positive (1, 1)—current on X°

Ty = lim —(f")" (),

n—>oo dn

and can be written as ff = w + dd°gy, where gy := > 2 qd "go f"is
continuous on X°. The current T ' is the fibered Green current of f.
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Let Y, be the generic fiber of a family J — S of subvarieties of relative
dimension ¢ of X — 5, and let ¢, : X, — & be a birational morphism such
that f" o ¢, extends as a morphism F), : X,, - X. We define

7 iy gonlary) (Fn)e iV} - er (L))
h’fn (Yﬂ) T n1—>ood ! (¢g+1) degyn (L”]) .

The next lemma follows from [8]:

Lemma 3.1. For any ) as above, ?Lfn(Yn) is well-defined and satisfies
Efn((fn)*(yn)) = dﬁfn(Yn). In addition, we can compute ﬁfn(Yn) as

~ 1 .
he (Y,) = Iy .
g (¥) (¢ + 1) degy, (Ly) /XO(C) A

Proof. The fact that it is well-defined zind the formula relating the limit
of =™+ ((f™),{V} - e1(L)?H) with T}Hl A (f«[V]) are contained in [8,
Theorem B]. We then can compute

~ 1 ~
() (¥2)) (q+ 1) degy, (f;Ly) Jxo) 7 (f[2))
1 ~
= *Tqul
(¢ + 1)d? degy; (Ly) /XO(C) (f f ) A (Y]
Ja+1 ~ R
(q + 1)dq degy77 (Ln) /)(0(@) f A [y] dhfn( 77)7

where we used that f*(ff) — df’ﬁ dimY, = ¢, and dimY = q + 1. 0

In particular, the last part of the lemma states that the height h £, (Yy) is

> 0 if and only if the measure T}JH A [V)] is not identically zero on X°(C).
Let 7, :=mo ¢y, : X, — S. Relying on estimates from [8] we can deduce

Lemma 3.2. There is a constant C > 1 depending only on (X, f, L) and Y
such that for any ample Q-line bundle M on S of degree 1 and anyn > 1,
we have

(@p Y} - (Fn) er (L))
(¢ +1) (0:{Y} - (Fn)*er (L) - cr(mpM))

Proof. Combining Proposition 3.5 and Theorem B from [8] we have

J-n(a+D) (@’2{3’} _ (Fn)*cl(ﬁ)q“) — /XO(C) T A+ 0 (1) .

dn

—d"hy, (Yy)| < C.

Let now a be a smooth form on S(C) which represents ¢; (M) (it has mass
1 = degg(M)) and w be a smooth form on X (C) which represents c¢;(L).
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By definition, we have

(@Y} - (Fn) er(£)? - er(mpM)) = / (f* )W) A AT ()

x0(C)

= T (f") )T A A

S3(©)

= dqn LO ((C) (deg)/t (Lt)) (0]
y

= d"" degy, (L),

where we used that dimY; = ¢, dim)? = ¢ + 1 and that ((f")*w)? A [V]
has bidegree (g, ¢) on Y°(C) so that 7. (((f*)*w)? A [V]) has bidegree (0, 0)
on Sg, (C), i.e. is a function, since the fibers of 7 have dimension g. O

4. Comparing the canonical and the naive heights in families

As above, let (X, f, L) be a family of polarized endomorphisms of degree
d > 2 defined over K, with regular part S°. We endow £ with a semi-
positive adelic continuous metrization £. We let ) € X be a subvariety
defined over K and such that m(Y) = S, and let S, be the maximal Zariski
open subset of S° such that 7|y is flat over SS),. We also endow S with an
ample divisor H of degree 1.

We prove here the following higher dimensional counterpart to Call and
Silverman’s pointwise estimate [3, Theorem 3.1], see [11, Theorem 1] for
the case of hypersurfaces of P*

Proposition 4.1. There exists a constant C' > 1 depending only on the
family (X, f, L) and the heights h; and hs g such that for any subvariety
Y C X such that (X, f,L,Y) is a dynamical pair with reqular part SS), and
Jor any t € S%(Q) we have

[z (V) =g (V)| < C(hsu(t) +1).

Proof. Let g be the relative dimension of ) and K be a finite extension
of Q over which } and ¢ are defined. We let D be a divisor of X which
represents £ and we decompose the height functions hy and hy, using this
representative of L:

1 = 1 0
P 7’LU>\D7@ and hy = —— nv)\ ,D¢,vy
LT K:Q % TR % o

where thpwoft = d-thDt,U and Xft,Dt,'U = Apu|x, +0y(1), where O, (1) =
0 for all but finitely places v € Mg. We also let hg i = m ZveMK NyAH,p-

h
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We rely on a key estimate of Call and Silverman [3, Theorem 3.2]: there
is a constant C1 > 1 depending only on the family (X, f, £), and the heights
hz and hg g such that for any ¢t € S°(Q), any = € X¢(Q) \ supp(D;), and
any v € Mg, we have

(4.1) ADo(2) = Agi.pol@)] < CO)Amo(t) + 1),

with C'(v) = C; > 1 for all v in a finite set S C Mg containing all
archimedean places, and C(v) = 0 otherwise. Moreover, the constant C}
depends only on the choice of D and on the choice of the above decompo-

sitions.
We now fix ¢t € S9(Q) and let ¢ := dimY; (which is independent of

t € S5(Q)). By definition, we have
1
(¢ + 1)[K: Q] degy,(Lt)

3 (2, - (5.

v€E My

hz(Yy) = hy, (Ys) =

Fix now a place v € Mk. Then we can compute

(L m), - (Tt 1e),

(B~ Lus) - L LT ),

>

/an( 0w~ MuDiw ) c1(Lo)l Aea(Lip)d”

where we used that the local height function Az,  — th D;v €xtends as

a continuous metric on the trivial bundle, since hy and lALft are induced
by adelic continuous metrization on the same line bundle L;. Combined
with (4.1), this gives

](LZ“M)U - (T |

< C(v) (As,Hp(t) + /,ﬂm (Lo)y A er(Logp)i™

- EM@

< C(v) (As.mo(t) + 1) (LJ Ly

0
q + 1) degy, (Ly),

—~ .

< C() (As,mp(t) +1)
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since the measures c1(L;)J A c1(Lt f)277 don’t give mass to the closed sub-
variety Dy MY}, seen as a pluripolar subset of X}, see e.g. [2, Lemma 8.6]
for non-archimedean v € Mg. As we have hgpyg = @ ZveMK Ny S, H,vs

summing over all places and dividing by (¢ + 1)[K : Q] degy, (L) gives
[hz (V) = hg (V)| < Cu (hsu(t) +1),

for all ¢ € S5,(Q), which is the wanted estimate, supp(D;) Nsupp(Y;) is not
a component of supp(Y;).

Let us now replace D by another divisor representing £ in a finite family
of such divisors so that we can make sure that for any family J — S and
any t € S (Q), there is a choice D such that supp(Df)) Nsupp(Y;) is not

a component of supp(Y;). Replacing C; by max; C; (D) gives the wanted
estimate. U

5. Variation of canonical heights of subvarieties

5.1. Variation of naive heights of subvarieties. The material here
follows the presentation of Yuan and Zhang [17] of the Deligne pairing ([5]).
Let S be a smooth and integral projective curve defined over a number field
K. Let w : X — S be a projective and flat morphism defined over K. Let
D :=dim(X)—1 > 0 be its relative dimension. Let L be a model ample line
bundle on X, i.e. there is a Ox-model 2 of X, together with an hermitian
line bundle .Z which restricts as L on the generic fiber of the structure
morphism 2~ — Spec(COk). One can define an adelic metrized ample line
bundle on S as the Deligne pairing @DH)
by combining several statements from [17].

. One can fprove the next result

Theorem 5.1. Let S be a smooth integral projective curve and X be an
integral projective variety, both defined over a number field. Assume there
is a flat and projective morphism @ : X — S of relative dimension D,
also defined over a number field. Let L be a big and nef line bundle on X,
equipped with a model metric.

Then M := ((D+1) degx, (Ln))_IEDH) is an adelic semi-positive con-
tinuous ample line bundle on S whose induced height function is given by

hiplt) = hp(X), te S

Moreover, for any place v € My, the measure c1(M), is m.c1(L)D and
degg(M) = hp,(X;), where X, is the generic fiber of m and Ly is the

restrictions of L to X,,.

Proof. Fix a Og-model 7 : 2" — . of m: X — S which is flat and projec-
tive and which induces the hermitian line bundle L. Yuan and Zhang [17,
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§4.4] prove that .4 = <.>27D+1

and that one can compute

) is an ample hermitian line bundle on .

g ) (2
(fDH)(t) © deg(t) deg(f)

where £ (resp. X;) is the closure of ¢ (resp. of X;) in the scheme 2. Note
that the last quantity is precisely (D + 1)degx, (L¢)hy(X¢). As 7 is pro-
jective and flat, degy,(L:) = degy, (Ly) for all t. We deduce the wanted
properties of M noticing that M is the restriction of .# to the special fiber

of the structure morphism . — Spec(0xk).
All there is left to do is to determine, for any archimedean place v € M,
the measure c1(M),. This is done in [17, §4.3.2] where c1 (M), = m.(c1(L)P)
is proved, which concludes the proof. [

5.2. From comparison of heights to variation of heights. We now
come back to the dynamical setting: let (X, f,£,)) be a dynamical pair
parametrized by a smooth projective curve S, all defined over a number
field K, with regular part S°.

In what follow, we say that the dynamical pair (X, f, £,)) is unstable if
D 7, (Yn) # 0. We now prove the following, which implies the main theorem.

Theorem 5.2. Let (X, f,L,)) be a dynamical pair parametrized by S with
reqular part S°, all defined over a number field K. For any Q-ample height
hs on S of degree 1 and any € > 0, there exists a constant C(g) > 0 such

that, the following holds for all t € So(Q),
(s, (Y) = £) hs() = C(e) < by, (Vi) < (hy, (Yy) + ) hs(t) + C(e).

In particular, if the dynamical pair (X, f,L£,Y) is unstable, the function
t— hy,(Y:) is an ample height on S.

Proof. As f is a finite endomorphism on X° and S On(y) = Sg, forany n > 1,

we can apply Proposition 4.1 to the cycle (f1).(Y;) for all ¢t € S3,(Q). This
is possible since (f{").(Y;) = deg(f']y;) - f(Yy) and f*(Y;) is irreducible at
least when Y; is. We have

Wz (- (¥2) = By (F1)=(YD)| < C (hs () +1).

Let now ¢, : &, — X be a birational morphism such that there is a
morphism Fj, : X, — X with F,, = f" o ¢, on ¢, (X°) and let L, :=
(d~"F,)" L. As F}, is a generically finite morphism and £ is an ample adelic
semi-positive continuous metrized line bundle, the line bundle £, is an
adelic semi-positive continuous metrized big and nef line bundle on &},. Set
now YV, := ¢, (). Up to applying the Raynaud-Gruson flattening theo-
rem [15, Theorem 5.2.2], we can assume })),, — S is flat and projective. Now,
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we define a her@tian line bundle L,, on Y, by restricting £,, to V,. Since
for any t € S(Q), we have hz((f)u(¥1)) = hyguy-2(¥) = b, (65 (Y1),
by the invariance property h 1 ((f)«(Yy) = dh 7, (Y%), this gives

(5.1) iz, (6 (V) = By (V)] < o (hs (1) +1).

We now rely on Theorem 5.1: the function t — hz (¢,"(Y:)) is a Weil
height function associated with an ample adelic semi-positive continuous
Q-line bundle M,, on S. Moreover, the degree of this line bundle is given by

- di"th((fn)*(Yﬂ))
1 q
= IR Ly (O (-0
1

= g+ D@ vol(Ly,) (™" () ())

= hy,(Yy) +O(d™),

where we used Lemma 3.1. We now use the quasi-equivalence of ample
height functions on a projective curve, see e.g. [12, Chapter 4, Corollary 3.5]:
for any two height functions hq, hs induced by two ample line bundles Ly, Lo
on S respectively, then

deg(My,)

i ha(t) _ deg(Ly)
hi(t)—oo hy(t) — deg(L1)’

Fix now any ample height hg on S induced by an ample Q-line bundle of
degree 1. We deduce from the above that

he((f7)«(YD) = (d"hy, (Yy) + O(1)) hs(t) + en(hs (1)),
where e, (hg(t)) = o(hs(t)) depends on n. Together with (5.1), this gives

g, (Vs (t) = By, (V)] < S (hs(0) + hs (1) + 1) + el (1),

for all t € S°(Q). Again by quasi-equivalence of ample heights, we have
hsu < Ca(hs + 1) since H is ample and hg is induced by an ample line
bundle, where C” depends only on deg(H). Fix n > 1 large enough so that
2C1(1 4+ Cy) < d™e. We then have

s, (V)b (8) = By, (Yo)| < Shs(t) + hsa(t) + Cs + enlhs (1)),

for all t € S°(Q), where C3 > 0 is a constant depending on ¢ > 0. Now,
as en(hs(t)) = o(hs(t)), there exists B(e) > 1 such that if hg(t) > B(e),
then e,(hs(t)) < ehg(t)/2 and we have €,(hg(t)) < B(e) + §hs(t). The
conclusion follows letting C'(g) := Cs3 + (e). O
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An immediate consequence is the Theorem from the introduction:

Proof the Main Theorem. Fix € > 0, divide the inequalities obtained in
Theorem 5.2 by hg(t) and make it tend to oo to find

o hp (M) -
1 — —hy (V)| <e.
hothoe hg(®) W<€
t€S°(Q)
As this holds for any € > 0, the result follows. O

Remark 5.3. As observed by the referee, the deep theory of adelic line
bundles of Yuan and Zhang [17] is perfectly adaptated to prove this kind
of statements and it actually holds on quasi-projective varieties. Using its
full strength could allow to simplify the proof by taking a suitable version
of Theorem 5.1 for quasi-projective variety (with 7 still being flat and
projective). Then, one can prove the main theorem of the current paper
by only applying the Deligne pairing to Lg, where Sy is a quasi-projective
subvariety of S over which f is a morphism and the metrization is provided
by [17, §6.1]. Still, we choose here to use the theory of Deligne pairings
over projective varieties (which is only a part of what Yuan and Zhang have
written about Deligne pairings) and we use softer arguments to conclude
the proof.
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author would like to thank the Institut Universitaire de France
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