We show that the only -Dirichlet numbers in a function field over a finite field are rational functions, unlike -Dirichlet numbers in . We also prove that there are uncountably many totally irrational singular vectors with large uniform exponent in quadratic surfaces over a positive characteristic field.
Nous montrons que contrairement aux nombres -Dirichlet dans , les seuls nombres -Dirichlet dans un corps de fonctions sur un corps fini sont les fonctions rationnelles. Nous prouvons également qu’il existe une quantité non dénombrable de vecteurs singuliers totalement irrationnels avec un grand exposant uniforme dans les surfaces quadratiques sur un corps de caractéristique positive.
Révisé le :
Accepté le :
Publié le :
Keywords: Singular vectors, Approximation in function field
Datta, Shreyasi  1 ; Xu, Yewei  2
CC-BY-ND 4.0
@article{JTNB_2024__36_3_1021_0,
author = {Datta, Shreyasi and Xu, Yewei},
title = {Singular {Vectors} and $\psi ${-Dirichlet} {Numbers} over {Function} {Field}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {1021--1038},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1305},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1305/}
}
TY - JOUR AU - Datta, Shreyasi AU - Xu, Yewei TI - Singular Vectors and $\psi $-Dirichlet Numbers over Function Field JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1021 EP - 1038 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1305/ DO - 10.5802/jtnb.1305 LA - en ID - JTNB_2024__36_3_1021_0 ER -
%0 Journal Article %A Datta, Shreyasi %A Xu, Yewei %T Singular Vectors and $\psi $-Dirichlet Numbers over Function Field %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1021-1038 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1305/ %R 10.5802/jtnb.1305 %G en %F JTNB_2024__36_3_1021_0
Datta, Shreyasi; Xu, Yewei. Singular Vectors and $\psi $-Dirichlet Numbers over Function Field. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1021-1038. doi: 10.5802/jtnb.1305
[1] On the Littlewood conjecture in fields of power series, Probability and number theory—Kanazawa 2005 (Advanced Studies in Pure Mathematics), Volume 49, Mathematical Society of Japan, 2005, pp. 1-20 | Zbl | MR
[2] On the -adic Littlewood conjecture, Duke Math. J., Volume 170 (2021) no. 10, pp. 2371-2419 | Zbl | MR
[3] Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z., Volume 19 (1924), pp. 153-206 | DOI | MR | Zbl
[4] Mahler’s and Koksma’s classifications in fields of power series, Nagoya Math. J., Volume 246 (2022), pp. 355-371 | DOI | Zbl
[5] Semianalytic and subanalytic sets, Publ. Math., Inst. Hautes Étud. Sci., Volume 67 (1988), pp. 5-42 | DOI | MR | Numdam | Zbl
[6] Khintchine’s theorem for affine hyperplanes in positive charateristic, J. Number Theory, Volume 238 (2022), pp. 17-36 | DOI | MR | Zbl
[7] Dirichlet’s theorem in function fields, Can. J. Math., Volume 69 (2017) no. 3, pp. 532-547 | DOI | MR | Zbl
[8] Remarks on Diophantine approximation in function fields, Math. Scand., Volume 124 (2019) no. 1, pp. 5-14 | DOI | MR | Zbl
[9] Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, Volume 124 (2007) no. 2, pp. 454-469 | DOI | MR | Zbl
[10] An Introduction to the Theory of Local Zeta Functions, AMS/IP Studies in Advanced Mathematics, 14, American Mathematical Society, 2000, xii+232 pages | MR
[11] Über eine Klasse linearer diophantischer Approximationen, Rendiconti Palermo, Volume 50 (1926), pp. 170-195 | DOI | Zbl
[12] Metric inhomogeneous Diophantine approximation on the field of formal Laurent series, Acta Arith., Volume 150 (2011) no. 2, pp. 129-142 | MR | Zbl
[13] On hausdorff dimension in inhomogeneous diophantine approximation over global function fields, J. Number Theory, Volume 251 (2023), pp. 102-146 | MR | Zbl
[14] Singular vectors on manifolds and fractals, Isr. J. Math., Volume 245 (2021) no. 2, pp. 589-613 | DOI | MR | Zbl
[15] -adic version of Minkowski’s geometry of numbers and Mahler’s compactness criterion, J. Number Theory, Volume 174 (2017), pp. 150-163 | DOI | Zbl
[16] A measure estimate in geometry of numbers and improvements to Dirichlet’s theorem, Proc. Lond. Math. Soc. (3), Volume 125 (2022) no. 4, pp. 778-824 | Zbl | DOI | MR
[17] A zero-one law for improvements to Dirichlet’s theorem, Proc. Am. Math. Soc., Volume 146 (2018) no. 5, pp. 1833-1844 | Zbl | MR | DOI
[18] An inhomogeneous Dirichlet theorem via shrinking targets, Compos. Math., Volume 155 (2019) no. 7, pp. 1402-1423 | Zbl | DOI | MR
[19] On well-approximable matrices over a field of formal series, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 2, pp. 255-268 | MR | Zbl | DOI
[20] A survey of Diophantine approximation in fields of power series, Monatsh. Math., Volume 130 (2000) no. 3, pp. 211-229 | Zbl | DOI | MR
[21] An analogue to Minkowski’s geometry of numbers in a field of series, Ann. Math. (2), Volume 42 (1941), pp. 488-522 | DOI | MR | Zbl
[22] Continued fractions in function fields: polynomial analogues of McMullen’s and Zaremba’s conjectures (2017) | arXiv
[23] Parametric geometry of numbers in function fields, Mathematika, Volume 63 (2017) no. 3, pp. 1114-1135 | Zbl | MR
[24] On continued fractions and diophantine approximation in power series fields, Acta Arith., Volume 95 (2000) no. 2, pp. 139-166 | Zbl | DOI | MR
Cité par Sources :





