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Singular Vectors and 1-Dirichlet Numbers over
Function Field

par SHREYASI DATTA et YEWEI XU

RESUME. Nous montrons que contrairement aux nombres -Dirichlet dans
R, les seuls nombres -Dirichlet dans un corps de fonctions sur un corps
fini sont les fonctions rationnelles. Nous prouvons également qu’il existe une
quantité non dénombrable de vecteurs singuliers totalement irrationnels avec
un grand exposant uniforme dans les surfaces quadratiques sur un corps de
caractéristique positive.

ABSTRACT. We show that the only -Dirichlet numbers in a function field
over a finite field are rational functions, unlike t-Dirichlet numbers in R.
We also prove that there are uncountably many totally irrational singular
vectors with large uniform exponent in quadratic surfaces over a positive
characteristic field.

1. Introduction

1.1. 4-Dirichlet numbers. Following [17], we define v-Dirichlet vectors
in F,((T~!))"™ and we denote the set of those vectors as D(1)). For the def-
initions of norms in F,((71))", readers are referred to Section 1.4. Before
defining D(v)), let us recall the Dirichlet’s theorem in Fy((T71))"; see [7,
Theorem 1.1]. For every t € N there exists 0 # q € F,[T]", qo € F,[T]
satisfying

1
‘qX+QO| < Ea
lal| < €.

Definition 1.1. Let ¢ : [tg,+00) — Ry be a function. A vector x =
(z1,...,7,) € Fy((T71)" is said to be 1-Dirichlet if for all sufficiently
large @ > 0 there exists 0 # q € F,[T]", qo € Fy[T] satisfying the following
System

|q "X+ QO‘ < TP(Q);

(1) lal < ©.

Manuscrit regu le 31 mai 2023, révisé le 16 aott 2024, accepté le 20 septembre 2024.
2020 Mathematics Subject Classification. 11J13, 11J54, 37A44, 11N56, 14G42.
Mots-clefs. Singular vectors, Approximation in function field.
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Let ¢.(Q) = gm- f x € F,((T~1))" is 1.-Dirichlet for every ¢ > 0, then
x is called singular vector. In recent years, 1-Dirichlet vectors were studied
in [16, 17, 18]. Even in the classical setting not much is known.

Diophantine approximation in function field has been a topic of inter-
est since the work of Artin, [3], which developed the theory of continued
fraction, and followed by Mahler’s work in [21], which studied geometry
of numbers in function field. For recent developments, we refer readers the
survey [20], and to [1, 2, 4, 6, 9, 12, 13, 19] for a necessarily incomplete
set of references. There are many interesting similarities and contrasts be-
tween the theory of Diophantine approximation over the real numbers and
in function field over finite fields. The main theorems in this paper show
both of these features.

In [17], for a non-increasing function t(t) < 1+ with ¢t — #(t) non-
decreasing, it was shown that D(v) in R has zero-one law for Lebesgue
measure depending on divergence or convergence of certain series involving
1. Surprisingly, the same is not true over function field when n = 1 as we
prove the following.

Theorem 1.2. Let 1 : [tg, +00) — Ry be non-increasing. If 1 (t) < % for
sufficiently large t, then the -Dirichlet points in F,((T~1)) are only in
Fy(T), ie. D) = Fy(T).

The above theorem shows that analogue of the main theorem in [17] over
function field becomes drastically different than the real case. The main tool
in proving Theorem 1.2 is the use of continued fraction expansion.

Remark 1.3. Theorem 2.4 in [8] shows that only Dirichlet improvable
numbers in function field are rational functions. Our Theorem 1.2 general-
izes the above mentioned result showing that even ¢-Dirichlet numbers are
also only rational functions. We note that the technique of [8] is different
than ours.

1.2. Plenty of singular vectors. The second part of this paper deals
with singular vectors in submanifolds of function fields. Note that, if
(z1,...,7,) € F ((T71))" belongs to a rational affine hyperplane, then
it must be singular. These are the most trivial singular vectors. In fact, the
converse is also true when n = 1 ([8]). So, it is natural to introduce the
following definition.

Definition 1.4. A vector is called totally irrational if it is not inside a
rational affine hyperplane of F,((T~1))".

For n > 1, in [11] Khintchine showed the existence of infinitely many to-
tally irrational singular vectors in R™. Moreover, Kleinbock, Moshchevitin
and Weiss in [14] showed that for real analytic submanifolds (of dimension
greater than 2) which are not contained inside a rational affine subspace,
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there are uncountably many totally irrational singular vectors. In this pa-
per, we prove analogous result for certain submanifolds in F,((71))™.
As a special case of our Theorem 1.6, we prove the following theorem.

Theorem 1.5. Suppose char(F,((T~1))) = p < co. Let U be an open subset
of Fo((T71)). We consider S of the following two types:

o S ={(zy,p3(2,),....,n(2,y)) | 2,y € U} CF((T1))", where
each pi(x,y) is a degree 2 polynomial.
o S = {(z,y,p(x,9)) | x,y € U} C F,((T™))?, where p(x,y) =
> afz P + > i=0 b?J s
Suppose that S is not contained inside any affine rational hyperplane, then
there exist uncountably many totally irrational singular vectors in S.

The main challenge comes from the lack of understanding about inter-
sections of a surface and an affine subspace in the function field setting.
Another difficulty is due to total disconnectedness of function field. For
real submanifolds, intersection of a connected analytic surface and an affine
subspace is well understood due to [5, §2]. Both of these facts were used
in [14] in a crucial manner. The proof in [14] relies on understanding how
“semianalytic” sets can spilt into connected analytic sets. This becomes
difficult in Fy((T1))", as the notion of semianalyticity is not well defined
due to the lack of order and the space F,((T1)) is totally disconnected.
That is why we had to tackle case by case and we prove the theorem for a
class of submanifolds which is smaller than the class of submanifolds that
was taken in [14].

1.3. On uniform exponent. One can define &(-), as follows, which
quantifies the singularity of a vector.

for all large enough @@ > 0,
(1.2) O(y) :=sup{w| J(q,q)€ Fo[T]" 1\ {0}
st la-y+all < gs: lall <@

Dirichlet’s Theorem ([7]) gives that @(y) > n for all y € F,((T~1))". Our
next theorem verifies that for certain analytic submanifolds in F,((7~1))",
there are plenty of totally irrational vectors whose exponents @( -) are in-
finity.

Theorem 1.6. Let char(F,((T71))) = p < oco. Let U be an open subset of
F,((T71)). We consider S of the following two types:

o S = {(z,y,p3(2,9), ..., pu(x,y)) |2,y € U} C Fo((T7))", where
each p;(z,y) is a degree 2 polynomial.

S = {(m,y,p(z,y))\a‘c,y. € U} C F,((T71))3 where p(x,y) =
Poal 2 + 37, bgjypj-
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Suppose that S is not contained inside any rational affine hyperplane, then
there exist uncountably many totally irrational y in S such that @(y) = oo.

Remark 1.7. In Lemma 3.12, we show that the above theorem is true for
some higher dimensional submanifolds.

1.4. Norms and Definitions. In this section and in the following sec-
tions, we will use |-| (resp. ||-||) to denote the norm in F,((T~1)) (resp.
F,((T71))"), unless otherwise mentioned. Let F, be a finite field of charac-
teristic p with ¢ := p" elements. Let F,[T] be the ring of polynomials over
F, and Fy(T") the field of rational functions. We define a norm |- | on Fy(T)
as follow:

0] :=0; ’g = edeg P—deg@

for all nonzero P,Q € Fy[T], where e is Euler’s number. Clearly |-| is
a nontrivial, non-archimedean, and discrete absolute value in Fy(T"). The
completion field of F,(T) with respect to this absolute value is F,((T1)),
i.e. the field of Laurent series over F,. We will denote the absolute value of
F,((T~1)) by the same notation |- |, is given as follows. Let a € F,((T™1)),

la = 0 if a =0,
T )eko ifa= > k<ko apT* ko € Z,a;, € F, and ay, # 0.

This clearly extends the absolute value | - | of Fy(T') — Fy((T~1)) and more-
over, the extension remains non-archimedean and discrete. In the above,
we call ko the degree of a, denoted dega. It is obvious that Fy[T] is dis-
crete in F,((T71)). For any n € N, throughout F,((T71))" is assumed to be
equipped with the supremum norm which is defined as ||x|| := max;<;<p, ||
for all x = (1,22, ...,2,) € F,((T71))", and with the topology induced by
this norm. Clearly F,[T]" is discrete in F,((7~1))". Since the topology on
F,((T~1))" considered here is the usual product topology on F,((T~1)), it
follows that F,((T~1))™ is locally compact as Fy((T~1)) is locally compact.
Note this construction Fy[T] C Fy(T) C F,((T™1)) is similar to Z ¢ Q C R.
Let A be the Haar measure on Fy((771))" which takes the value 1 on the
closed unit ball ||x|| < 1.

Following [15, Remark 3.4] and [23, §2.2], we recall the definition of
orthogonality of vectors in F,((T71))".

Definition 1.8. We say {v1,...,Vy,} in F ((T71))" is orthogonal if
Jarvi + -+ + aViul| = il [vi]}

for every a; € F,((T™1)),1 <i < m.

Moreover, if each 1 < ¢ < m, ||v;]] = 1, then we say the collection
{v1,...,Vm} to be orthonormal.
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Moreover, following [23, §2.2] we say that the subspaces Vi,...,V,, in
F,((T~1))" are orthogonal if

Ivi -+ vin]| = max{|| v}, for every vi € V;,1 < i <m.
1=

Let us define
X = {x € F,(T"1)"|z; = 0}.
Clearly, by the above definition of orthogonality of subspaces and by the
definition of max norm, &; is orthogonal to z;-axis := {x € F,((T~1))"|
z; = 0,5 # i}. Given any affine subspace A in F,((T71))", we say A is
orthogonal to z;-axis if A = X; + v, for some v € F,((T~1))".

Next, let us recall the definition of F,((7~!))-analytic map. Let B be a
ball in F,((T71)). Wecall f: B C F,((T71)) = F,((T1)) to be Fy((T1))-
analytic on B if there exists a b € B such that f(z) = >.3%,a;(z — b)%, a; €
F,((T~1)). It is worth pointing out that unlike real analytic maps, if f is
F,((T71))-analytic on B, then for every b € B there exist a; € F,((T1))
such that f(x) = Y22 a;(x —b)". In particular, polynomials are F,((T1))-
analytic on any ball. Moreover, a map f = (f1,..., fn) : B C F,(T71)) —
F,((T~1))" is analytic on B if each f; is analytic on B.

2. -Dirichlet numbers in function field
2.1. Continued fraction over function field. Supposea =} ;4 apT*
€ F ((T™1)) where ag, # 0, we call [a] := Y <<, arT* the integer part of
a and {a) = Y .o arT* the fractional part of a. Note that |[a]| = e* > 1

or we have [a] = 0. Also, note that |(a)| < 1. This observation leads us
to construct continued fraction expansion of a. An expression of the form
ap + ﬁ where ag, a1, ag, ... € Fy[T] is called a simple continued frac-
agt...
tion; see [24, §1]. An expression of the form
1

B gy ———,

dn a1 + a1
where pp, qn, ao, a1, ...,a, € Fy[T] is called a finite continued fraction. An

element of F,(T"), can be represented as a unique finite continued fraction.
An a € F ((T71)) \F4[T] can be represented as a simple continued fraction
in the form of [ag, a1, as,...] and we call the numbers 2—: = [ag, a1, ..., an]

the convergents of . Note that |g,| is increasing as n — oo. The relation
between two consecutive convergents is given by the following equation:

PiGis1 — piv1qi = (—1)" fori € Z,i > —2.
Hence we have,
+1
Andn+1

1 1

Pn+149n — Pndn+1 _ <
|Qn’ : |Qn+l‘ o |Qn

dndn+1

Pn+1 Pn
n+1 dn

>



1026 Shreyasi DATTA, Yewei XU

In fact, by Equation 1.12 in [24] we have
P 1
o — 7
dn dndn+1

where Z—: is a convergent of a € F,((T~1)) \ F,(T). We recall the following
definition and theorem of best approximation [22, §1.2].

(2.1)

)

Definition 2.1. We say a rational § is the best approximation to some
o € Fy((T1)) if for all £ such that |d| < |b| we have |[ba — a| < [do — (.

Theorem 2.2. Let a € Fy ((T71)) and let (z—:)n be its convergents. Let
p,q € Fy[T] with g # 0 be two relatively prime polynomials. Then % is the
best approximation to « if and only if it is convergent to «.

We want to recall the following Lemma 2.1 from [17] which was stated
for real numbers. The verbatim proof will give the following lemma for the
function field. The proof uses the fact that convergents are best approxima-
tions, which we have by Theorem 2.2. In what follows Tq’—: are convergents

of x.

Lemma 2.3. Let ¢ : [to,+00) — Ry be non-increasing. Then z €

F,(T7Y)) \ Fy(T) is ¢-Dirichlet if and only if |{qgn—12)| < ¥(|qn]) for suf-
ficiently large n.

2.2. Proof of Theorem 1.2. It is easy to see that Fy(T") C D(z)). We
want to show that D(y)) C F,(T). By Equation (2.1) for z € F,((T71)) \

Fo(T) we have |(gn—12)| = ﬁ, V n. Since ¢(t) < 7 for all large enough

t, by Lemma 2.3 we conclude that there is no x € F,((T~1)) \ F,(T) such
that = is -Dirichlet.

3. Too many vectors with high uniform exponent

In this section, we study totally irrational singular vectors in submani-
folds of Fy((T71))". In dimension n = 1, Theorem 2.4 in [8] implies that
the set of numbers y in F,((T~1)) that are singular is F,(T).

In order to state the main theorem of this section, we need to define the
irrationality measure function as follows. We follow the definition in [14].

Definition 3.1. We define ® : F,[T]" \ {0} — R4 to be a proper function
if the set {q € Fy[T]" \ {0} : ®(q) < C} is finite for any C' > 0. For any
arbitrary ® and any y € F,((T7!))", we define the irrationality measure
function

1) = min -y + qol.
Yoy ()= aemm im0y a@s @Y !

We can now state one of the main theorems of this section.
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Theorem 3.2. Let char(F,((T7!))) = p < 0o. Let U be an open subset of
F,((T™1)). We consider S of the following two types:

o S = {(z,y,p3(x,9),...,pn(x,y)) |2,y € U} C F,((T71))", where
each pi(x,y) is a degree 2 polynomial.
o S = {(z,y,p(z,9) |z,y € Uy C F,((T71))? where p(z,y) =
S al e + >0 b?J y” .
Suppose that S is not contained inside any rational affine hyperplane. Then
for any proper function ® : F,[T|" \ {0} = R and for any non-increasing
function ¢ : Ry — Ry, there exist uncountably many totally irrationals
y € S such that Yoy (t) < ¢(t) for all large enough t.

As an application of the previous theorem, we get Theorem 1.6.

Proof of Theorem 1.6. By taking ®(q) = ||q||, Theorem 1.6 follows from
Theorem 3.2. U

It is also worth pointing out that in the above theorem, we can assume
without loss of generality that U is a ball in Fy((771)). Hence for the rest
of the paper we assume U is an open (closed) ball in F,((T1)).

Let us recall Theorem 1.1 from [14], which was proved for locally closed
subsets of R™. The same proof verbatim will work for locally closed subsets
in F,((T71))™. It is noteworthy that the proof follows Khintchine’s argu-
ment in [11]. We define |A| := max?1]' |a;|, where A : ajz1 + - + apx, =
an+1, and (a1, .., an41) is a primitive vector in Fy [T)7+L,

Theorem 3.3. Let S C F,((T1))" be a nonempty locally closed subset.
Let {L1, Lo, ...} and {L}, L5, ...} be disjoint collections of distinct closed
subsets of S, each of which is contained in a rational affine hyperplane in
F,((T~1))", and for each i let A; be a rational affine hyperplane containing
L;, assume the following hold:

(a) U; LiuU; L = {z € S : = is contained in a rational affine hyper-
plane};
(b) For each i and each a >0, Li = Ua;5a Li N Lj;
(¢c) For each i, and for any finite subsets of indices F, F' with i ¢ F,
we have Ly = Li — (Urep L U Uper Li));
(d) U; Li is dense in S.
Then for arbitrary ® : Fo[T]"\ {0} — R4 proper function and for any non-

increasing function ¢ : Ry — Ry, there exist uncountably many totally
irrationals y € S such that Vg (t) < ¢(t) for all large enough t.

We will refer to the property (a), (b), (c), and (d) defined above as
“Property A”. Let us recall the following Theorem 2.1.1 in [10] which we
are going to use throughout the rest of this section.
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Theorem 3.4. Let K be an arbitrary field and assume that for
some m, n every Fij(z,y) in F(x,y) = (Fi(z,y),...,Fn(z,y)) is in
K[X,Y]] = Kl[z1,---,Zn,Y1,--.,Ym]| satisfying F;(0,0) = 0 and fur-

m‘(o ) % 0, in which H is the Jacobian. Then there

exists a unique f(x) = (fi(z),..., fm(x)) with every fi(x) in Klz]] =
K[z, ..., zn]] satisfying f;(0) =0 and further F(z, f(x)) = 0.

3.1. When each p;(z,y) is a degree 2 polynomial and F,((T7!))
is of any positive characteristic. Let us consider

S ={(z,y,p3(x,y),...,pn(z,y)) |2,y € U},
where U is an open subset of F,((T1)), and

pi(z,y) = bi12® + bioxy + b;3y® + biax + bisy + big

with b;1,bi2,...,big € Fo((T71)) and b; 1,b; 2, b;,3 not being zero simulta-
neously for ¢ = 3,...,n. Let us take A to be a rational affine hyperplane
in F,((T7'))" and we assume that S is not contained inside A. We can
define A by the linear equation a1z + asxs + - + anTn = apy1, where
(a1,a2,...,an+1) € Fy[T]"" is primitive. Note that S N A is given by the
solutions to the equation;

(3.1) fz,y) =0,
where
n
flz,y) = Zaipi(xay) + 1% + a2y — Gny1-
i=3
We see that f is a polynomial of degree less than or equal to 2. Now note
that

a n n
(3.2) % = 2(2%6@13: + aibzpy) + (a1 + Z aibi,4)
=3 =3
and
8f n n
(3.3) o > (aibix + 2aibizy) + (a2 + Y aibis).
1=3 =3

If g—i(aso,yo) # 0, then by Theorem 3.4 we get a neighborhood of (xg, o),
where y is a F,((T~!))-analytic function of z. If g—g(mo,yo) # 0 then lo-
cally we can write z as a F,((T~1))-analytic function of y. Hence in or-
der to find out all possible (xg,yp) such that there is no neighborhood of
(o, Y0, P3(0,Y0)s - - -, Pn(T0,90)) € SN A that is analytic curve in S N A,
we consider the linear system

(3.4 {

Y
I

SRS
° 2
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The corresponding coefficient matrix M € Matay2(F,((T1))) of the sys-
tem is
F:an 2a;b;1 Yoz agbio }
Yitgaibio  Yoita2abiz]’

First note that if as, ..., a, are zero, then SN A is an analytic curve as the
equation of A would be a1x + a2y = apy1. Therefore one of as, . .., a, must
be nonzero, and without loss of generality we assume that as # 0. Next let
us denote,

n
b =Y aibiy
i=3

for k=1,...,6. With this setting, we have the following lemma.

Lemma 3.5. If b3 # 4b1b3, then there are at most finitely many points of
AN S such that their neighbourhood is not an F,((T~1))-analytic curve in
Ry (T )",

Proof. Note that det(M) = 4b1bs — b3. Hence by the hypothesis, we know
that the system has only one solution. This completes the proof. O

From the proof above we know that the key is to solve the following
equations;

(3.5) flz,y) =Y api(z,y) + a17 + agy — ant1
i—3

= bia? + boxy + bsy? + (a1 + ba)z + (a2 + bs)y + (be — ant1) =0,

0
(3. O (a.4) = 2w + by + (e + ) =0,
of
(3.7) a—y(:c, y) = box + 2b3y + (az + bs) = 0.
Lemma 3.6. If
(3.8) b3 = 4b1b3

and by # 0, then there are at most finitely many points of AN S that its
neighbourhood is not an Fy((T~1))-analytic curve in Fy((T~1))".

Proof. Suppose that there exists no point that satisfies System (3.4), then
the conclusion of the lemma holds trivially.
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Now suppose that there exists a point (z¢, yo) that satisfies System (3.4).
Using Equation (3.8) we have,

3.7
ba(az + bs) 2 —b2zo — 2b3(bayi)
(39) (3:6) *b%.’ﬂo + 2[)3(2()11‘0 + (a1 + b4))

(358) 2bs(ay + by).

For any z,y € U,

(3.10) b3/ (x,y)

3.5
(3.5) b3 (b1x? + baxy + b3y?) + b3((a1 + ba)z + (az + bs)y)

-+ b%(bG — an+1)
3.8
) by (2b12 + bay)? + b3 (a1 + ba)z + (az + bs)y) + b2(bs — ans1)

3.9
(:)b3(2b1$ + bgy)2 + bg(al + b4)(b2$ + 2b3y) + b%(bﬁ — an+1).
For any point that satisfies System (3.4),

(3.11) b3(2b11’ + bgy)2 + bg(al + b4)(bg$ + 2b3y) + b%(b@ — an+1)
3.6),(3.7
( ):( )bg(al + b4)2 — bg(al + b4)(a2 + b5) + b%(b@ — an+1)

(:2)) b%(bﬁ — an+1) — b3(a1 + b4)2.

Suppose that b3(bg — ay,11) # bs(a1 + bs)?. We know that Equation (3.5)
would never be satisfied for any points satisfying the System (3.4). There-
fore there is no point in S N A such that its neighborhood is not an
F,((T~1))-analytic curve.

Now suppose that

(3.12) b%(b(; —apt1) = bs(a + b4)2.

Let g(z) := —%Zﬁb“) and 7 be {(z,g(x),ps(z,g(x)),...,pn(z,g9(x))) |
x € U}. Then clearly any point in ~ satisfies (3.6), (3.7) and using (3.12)
one can see that any point in v also satisfies (3.5). Hence we have vy C SN A.
Note here Equations (3.6) and (3.7) are essentially the same.

Now for any point in S N A, we have

f(z,y) =0

3.10
(:>) b3 (2b1x + bzy)2 + ba(aq + by)(box 4 2b3y) + b%(be‘ —apt1) =0

3.12),(3.8
( :)(> ) b3(2b1x + by +ay + b4)2 =0

2b1x + (a1 + by
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The last equality holds because b3 # 0 as by # 0. Since v is already an
analytic curve, this completes the proof of the lemma. O

Lemma 3.7. Ifb3 = 4b1b3 and by = 0, then there are at most finitely many
points of AN S that its neighbourhood is not an Fy((T~1))-analytic curve
in F, (T 1)".
Proof. If by = 0,bo = 0,b3 = 0 and there exists one point whose neigh-
borhood is not an F,((T~1))-analytic curve, then S N A being nonempty
implies SN A = S, because f(z,y) = bg — any1 = 0. This contradicts the
standing assumption that S is not contained inside A.

If char(F,((T71))) # 2, then bybs = 0. Since by, by and bz cannot be zero
simultaneously, assume without loss of generality that b1 # 0 and b3 = 0.

Suppose that there exists no point that satisfies System (3.4), then the
conclusion of the lemma holds. So let us assume that there exists a point
(x0,y0) that satisfies System (3.4), then Equation (3.7) gives us az+bs = 0.
By Equation (3.5), we have

bll‘g + (a1 + b4)£L' + (b6 — an+1) =0.

At most two x can satisfy the above equation, say they are x; and zo
respectively. Then

71 ={(z1,9,p3(z1,Y), - - -, Pn(21,9)) |y € U}
and
Y2 = {(#2,9,p3(22,9), .., pu(@2,9)) [y € U}
are both analytic curves and they are inside S N A.
In addition, since

f(x,y) = bia® + (a1 + ba)z + (bg — ant1),

we know that any point on S N A must have an x-coordinate equal to x
or xs, which means that it is in v, or 7. In other words, SN A = v U .
Thus the proof is complete for char(F,((T71))) # 2.

If char(F,((T~1))) = 2, then % = aj + by and %g]; = ag + bs. If either of
the two is nonzero then the conclusion of the lemma holds. Otherwise, for
every x,y we have

f(z,y) = b1a” + bsy® + (b — ant1)-
Since b1, bo, and b3 cannot be zero simultaneously, assume without loss of
generality that bs # 0. Suppose Z—; is not square. Now if we have two points
(0,40, P3(%0,%0); - - - Pn(T0,90)) and (z1,y1,p3(x1,41);-- -, Pu(21,91)) in
SN A, then
2 2 _ 5 .2 2 2 _ 2
bizg + b3yy = bizy + bsy; = bi(z1 — 70)” = b3(y1 — vo)~

The above gives a contradiction to the assumption that Z—; is not a square.
Hence in this case there could be at max one point in S N A.
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Now let us assume Z—; = a? for some a € F,((T~1)). Any point in SN A
satisfies the equation by 22 +b3y? = (an+1—be). This is equivalent to a?x? +

ni1—b
y* = B, where § = =% Suppose that (zo, Yo, p3(0, Y0); - - - » Pu(20, Y0))
is a point in S N A, which implies a?2 + y3 = 3. Suppose that

(z(t),y(t),p3(z(t),y(t)), -, pnlx(t),y(?)))

is in SNA. For any t € F,((T~1)), let 2(t) = x¢+t. Then the corresponding
y(t) can be given as (y(t))? = f—a?(x(t))? = (B—a?23) —a?t? = y3 +a?t2.
Therefore y(t) = yo + at, and this shows that S N A gives an analytic
curve. g

Combining Lemma 3.5, Lemma 3.6, and Lemma 3.7 we get the following
proposition.

Proposition 3.8. Let S = {(z,y,p3(x,y),...,pn(x,y)) |2,y € U}, where
U is an open set of F,((T™Y)), and each pi(x,y) is a degree 2 polynomial
and A be an affine rational hyperplane in F,((T~1))". Suppose that S is not
contained inside A then there are at most finitely many points of SN A such
that its neighbourhood is not an Fy((T1))-analytic curve in F ((T1))™.

By the above proposition, we have that SN A\ J = U,cgn4 7(2), where
J is a finite set of points which do not have an F,((7~1))-analytic curve as
neighborhood, and 7(z) is an F,((7!))-analytic curve which is a neighbor-
hood of z in SNA. Also, note that v(z) is open and closed. Since SNA\ J is a
second countable space, we know that there exists a countable subcovering
v, ie. SNAN\J =U,;v-

Theorem 3.9. Let S be as in the previous proposition. There exist {L;},
{L5}, {Aj} as mentioned in Theorem 3.3, that satisfy Property A.

Proof. Let {A;} be the set of affine rational hyperplanes orthogonal to one
of z-axis or y-axis in F,((7T1))". Now let us define L; = S N A;, which are
closed subsets and curves of S.

Next we define {L}. For any affine rational hyperplane A that has a
nonempty intersection with S, by Proposition 3.8, we have that SN A is
union of ;, excluding finitely many points. Let {L}} = {v; : Vi,7; & L;}.
Now we want to verify that these collections satisfy four hypotheses of
Theorem 3.3.

Property (a) of Theorem 3.3 follows directly from how we defined these
sets.

First, let us consider L; = SN A;, such that A; : = a, a € Fy(T). Now
let us consider A;, 1y = %, where b € Fy[T). Since L; = {(a,y,p3(a,y), ...,

.ypnla,y) |y € U}, and {% € U |k > m} for some m € N, is dense in U,
property (b) follows.
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Let F and F’ are as in hypothesis (¢) of Theorem 3.3. Let

lﬂ ::{(a7y7p3(a7y)"‘7pn(a7y))|y € l]}’

where a € Fy(T). Note that each L; N Ly with k € F' is either empty or
consists of only a single point. For any & € F’, by the equation given
above, L; N L}, = L; N . We can write v is a subset of ajz + asy +
Yo s aipi(x,y) —any1 = 0, and therefore, L; Ny is a subset of aja+ azy +
Yoiaaipi(a,y) — ap+1 = 0. Hence only finitely many solutions is possible
and L; N L;C/ has no interior. The same proof will work when L; = A; N S
where A; is orthogonal to y-axis.

To verify property (d) of Theorem 3.3 it is enough to observe that SN A;
looks like

(x,a,p3(x,a),...,pp(z,a) |z €U}
or
(6,4, 23(b,y), -, pu(by) [y € U},
where a,b € Fy(T). Clearly, they form a dense set in S. O

3.2. A special case in higher degree p(x,y).

Proposition 3.10. Let char(F,((T71)))=p < +oo. Let S ={(z,y,p(z,y)) |
z,y € U}, where p(x,y) = >, bflxpi + 2200 czfypj and U is an open
subset in F,((T~1)). There are at most finitely many points of SN A such
that its neighbourhood is not an F,((T~1Y))-analytic curve in Fy((T~1))3.

Proof. Let A be given by the equation a1x + asy + asz = aq. Without loss
of generality let us assume that SN A is nonempty and that there exists at
least one point of SN A whose neighbourhood is not an F,((7!))-analytic
curve in F, ((T~1))3. This implies ag # 0, and we can also assume a3 = 1
after normalization. This implies that a1 + by = a2 + ¢g = 0. Suppose also
without loss of generality that m > n, b,, # 0, and ¢,, # 0. The intersection
SN A is given by f(z,y) =0, where

m n

flay) =S 0" +3 &y —ay
i=1 j=1

Since S N A is nonempty, a4 must have a p-th root, say it is ai,o = ay.
Therefore, we have that S N A is given by

m n
i—1 i—1 ji—1 -1
folw,y) =Yt a? + >y —ayp.
i=1 j=1
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If SN A has one point which has no neighbourhood that is an F,((T71))-
analytic curve, we have by = ¢; = 0. Hence we can write fo(z,y) = 0

as,
P

m n

i—2 o i—2 o
A C e — as.
i=2 =2

Since SN A is nonempty aso must have a p-th root, say it is aj; = as.
Since fo(z,y) = (f1(x,y))?, where
n

fi(z pr” ZQJFZC?] 2pr2—@417

7j=2

we have that S N A is defined by fi(z,y) = 0.
We use induction to derive the desired results. For any k& € N satisfying

1<k<n-1,by=---=bp_1=0,and ¢; =+ = ¢c_1 = 0, assume that
SN A is given by fx(z,y) = 0, where

m
i—k— i k— _
fk(a:,y): Z bp 1xp k— 1+ Z J 1 p] k 1_0147]'C
i=k+1 j=k+1

for some ayy € Fy((T71)). We have % = bi4+1 and %—Z“ = Cp+1. By Sys-
tem (3.4), we derive that bgy1 = cx+1 = 0. Now since

m n

Ju(w,y) = Z bekilxpiikil + Z Céﬂikilypjikil — G4,k
i=k-+2 j=k+2
m ' P
= ( Z bflikf 27 4 Z pj - 2) — a4k,
i=k+2 j=k+2

and by our assumption that S N A is nonempty, we know that a4, must
have a p-th root, say it is a4 1) € F,((T71)), ie., ai’(kﬂ) = a4, . Define

m n

i—k—2  i—k—2 Jj—k—2 j—k—2
frora(zy) = Y o a? + e y = Qg (k41)-

i=k+2 j=k+2
Then
fk<$7 y) = (fk+1($, y)>p

This implies that the intersection S N A is given by the equation

fk+1(x>y) =0.
Repeating the steps above we see that the intersection SN A is given by

frn—1(z,y) = 0. Also from the induction above, we see that

m i—n
fo1(@,y) = oy — aao1 + Y 00 2P

i=n
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This tells us that S N A is completely given by the curve
{(z, 9(x), p(z, 9(2))) |z € U},

where

Cn

ks i—mn i—n
g(x) == — <a47n_1 — bel zP ) , which is analytic. O
i=n

The exact same proof as Theorem 3.9 with suitable changes gives the
following theorem.

Theorem 3.11. Let S = {(z,y,> i~ bfi:zpi + >0 c?jypj)}, where x,,
bi,cj € Fo((T7Y)), and not all b;s or cjs are being zero. Then there exists
{Li}, {L}}, {A;} that satisfies Property A.

We now have everything we need to prove the main theorem of this
section:

Proof of Theorem 3.2. Theorem 3.9 and Theorem 3.11 guarantee that the
hypotheses of Theorem 3.3 are met by surfaces considered in Theorem 3.2.
Therefore by Theorem 3.3, Theorem 3.2 follows. U

3.3. Surface to higher dimensional manifold. Let )\; be the Lebesgue
measure in B(0,1)F. We say f : B(0,1)¥ — F,((T~!))" is non-planar at x
if, for every ball B such that xg € B, f(B) is not contained in any proper
affine hyperplane. Then we say (f,\;) is nonplanar if f is nonplanar at
Ar almost every xg. The following theorem is somewhat an analogue to
Lemma 3.5 in [14].

Lemma 3.12. Suppose that for k > 3 and B(0,1) is the open and closed
ball in Fy((TY)) of radius 1. Let f : B(0,1)* — F,((T~1))" be a contin-
uous map, and M := f(B(0,1)¥). Suppose that (f,\) is nonplanar. Then
there exists y € B(0,1)*72 such that the surface My := fy((B(0,1)?) is
not contained inside an rational affine hyperplane, where fy, : B(0, 1)2 »
Fy(T)", £y (21, 72) = £(1,22,).

Proof. We will prove this by contradiction. Suppose for every y € B(0,1)¥~2
there exists a rational affine subspace Ay such that B(0,1)2 x {y} C
f~1(Ay N M) implies B(0,1)* f~1(An M). By
Baire category theorem there is one A such that f~1(A N M) contains an
open ball inside B(0,1)*. This contradicts the fact that (f, ;) is nonpla-
nar. U

Remark 3.13.

(1) In the above lemma we don’t need to consider f to be analytic. We
need a stronger assumption that (f, A) is nonplanar as compared to
M being not inside an affine hyperplane.

= UA is a rational affine subspace
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(2) The above lemma shows it is enough to prove Theorem 1.6 for
surfaces in certain cases.

3.4. Product of perfect sets. Let us recall that a subset of F,((71))
is called perfect if it is compact and has no isolated points. The proof of
the following proposition is the same as the proof of Theorem 1.6 in [14].
We still include the proof to make the paper self-contained.

Proposition 3.14. Let n > 2 and let Sy,...,5S, be perfect subsets of
F,((T71)) such that Fo(T) N Sy is dense in Sy and Fy(T) N Sy is dense
in Sa. Let S =[]}y Sj. Then there exist a collection of {L;}, {L:}, {A:}
of S that satisfy Property A.

Proof. Let us take {4;} to be the collection
{X1 4+ (a,0,...,0),a e Fo(T)} U{AX2+(0,0,0,...,0),b € Fo(T)}.

Note by definition in Section 1.4, {A;} is the collection of affine rational
hyperplanes that are orthogonal to either x;-axis or xo-axis. Note that X} +
(a,0,...,0) = {x € F,((T"1))" | 21 = a} and similarly X>+(0,b,0,...,0) =
{x € F,((T7"))"|x2 = b}. Let us define L; = A; N S, and {L}} be the
collection of SN A, where A is affine rational hyperplane, and L; ¢ {L;}. For
Li={x €F,(T7Y))" |21 = a}NS,a € F (T), suppose (a, 9, T3, ...,Ty) €
L;, then we have x5 € Sy. Since Fy(T) N S5 is dense in Sy and S is perfect,
there exists g € IFy(T) such that % —j00 T2 and |Q;| — co. Hence (b)

J
of Property A is satisfied as L; = {x € F,((T1))" |22 = S—J} N S belong
J
to the union in the right-hand side of (b) in Theorem 3.3. To the contrary
to (c) in Theorem 3.3 suppose there exists

XELi\Li\ U L.ulL,.
keF, K € F

This implies there exists an open set x € V' such that VN L;\Uyeppep LU
L}, = 0. This implies V N L; C Upeppep Lr U Ly, Since F, F" are finite,
i ¢ F, and S;’s are perfect the last inclusion is not possible. Note that (a)
follows from the construction and (d) follows from the hypothesis F,(7") N
Si,i = 1,2 are dense in S;. O

Thus we have the following theorem combining Theorem 3.3 and Propo-
sition 3.14.

Theorem 3.15. Letn > 2 and let Sy, . .., Sy, be perfect subsets of Fy((T 1))
such that (Fq(T) N S1) is dense in S and (Fq(T) N S2) is dense in Sy. Let
S = H;‘:l S;. Then there exist uncountably many totally irrational singular
vectors in S.
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