Some Obstructions to Solvable Points on Higher Genus Curves
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1009-1019

It is known that for a curve defined over of genus g4, there exists a point on the curve defined over a solvable extension of . We relate points on curves of genus g5 over solvable extensions to the Bombieri–Lang conjecture. Specifically, we show that varieties parametrising points defined over extensions with a fixed solvable Galois group are of general type. Moreover, we show the existence of certain subvarieties in these varieties imply the existence of solvable morphisms from the curve.

On sait que toute courbe algébrique sur de genre g4 admet un point défini sur une extension résoluble de . Nous établissons un lien entre les points des courbes de genre g5 définis sur les extensions résolubles et la conjecture de Bombieri–Lang. Plus précisément, nous montrons que les variétés paramétrant les points définis sur les extensions de groupe de Galois résoluble fixé sont de type général. En outre, nous montrons que l’existence de certaines sous-variétés de ces variétés implique l’existence de morphismes résolubles définies sur la courbe.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1304
Classification : 11G30, 11G35, 14G05
Keywords: Higher genus curves, solvable points, quotient varieties, rational points, solvable morphisms

Rawson, James  1

1 Mathematics Institute, University of Warwick, Coventry United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_1009_0,
     author = {Rawson, James},
     title = {Some {Obstructions} to {Solvable} {Points} on {Higher} {Genus} {Curves}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1009--1019},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     doi = {10.5802/jtnb.1304},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1304/}
}
TY  - JOUR
AU  - Rawson, James
TI  - Some Obstructions to Solvable Points on Higher Genus Curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 1009
EP  - 1019
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1304/
DO  - 10.5802/jtnb.1304
LA  - en
ID  - JTNB_2024__36_3_1009_0
ER  - 
%0 Journal Article
%A Rawson, James
%T Some Obstructions to Solvable Points on Higher Genus Curves
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 1009-1019
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1304/
%R 10.5802/jtnb.1304
%G en
%F JTNB_2024__36_3_1009_0
Rawson, James. Some Obstructions to Solvable Points on Higher Genus Curves. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1009-1019. doi: 10.5802/jtnb.1304

[1] Arapura, Donu; Archava, Sviatoslav Kodaira dimension of symmetric powers, Proc. Am. Math. Soc., Volume 131 (2003) no. 5, pp. 1369-1372 | DOI | MR | Zbl

[2] Benoist, Olivier Kodaira dimension of symmetric products of curves, MathOverflow, 2013 https://mathoverflow.net/q/123980 (version: 2013-03-08)

[3] Clark, Allan Elements of Abstract Algebra, Dover Books on Mathematics Series, Dover Publications, 1984, xiv+324 pages

[4] Debarre, Olivier Curves and Divisors on Algebraic Varieties, Springer (2001), pp. 1-36 | DOI

[5] Lang, Serge Hyperbolic and Diophantine analysis, Bull. Am. Math. Soc., Volume 14 (1986) no. 2, pp. 159-205 | DOI | MR | Zbl

[6] Ogg, Andrew P. Über die Automorphismengruppe von X 0 (N)., Math. Ann., Volume 228 (1977), pp. 279-292 http://eudml.org/doc/162996 | MR | Zbl

[7] Ozman, Ekin; Siksek, Samir Quadratic points on modular curves, Math. Comput., Volume 88 (2018), pp. 2461-2484 http://wrap.warwick.ac.uk/109403/ | DOI | Zbl | MR

[8] Pál, Ambrus Solvable Points on Projective Algebraic Curves, Can. J. Math., Volume 56 (2004) no. 3, pp. 612-637 | DOI | MR | Zbl

[9] Serre, Jean-Pierre Hilbert’s Irreducibility Theorem, Jones and Bartlett Publishers (1992), pp. 19-34

[10] Ueno, Kenji Classification of algebraic varieties, I, Compos. Math., Volume 27 (1973) no. 3, pp. 277-342 | MR | Zbl | Numdam

[11] Wiles, Andrew; Çiperiani, Mirela Solvable points on genus one curves, Duke Math. J., Volume 142 (2008) no. 3, pp. 381-464 | DOI | MR | Zbl

[12] Zariski, Oscar Sull’impossibilità di risolvere parametricamente per radicali un’equazione algebrica f(x,y)=0 di genere p>6 a moduli generali, Rendiconti Accad. d. L. Roma (6), Volume 3 (1926), pp. 660-666 | Zbl

Cité par Sources :