It is known that for a curve defined over of genus , there exists a point on the curve defined over a solvable extension of . We relate points on curves of genus over solvable extensions to the Bombieri–Lang conjecture. Specifically, we show that varieties parametrising points defined over extensions with a fixed solvable Galois group are of general type. Moreover, we show the existence of certain subvarieties in these varieties imply the existence of solvable morphisms from the curve.
On sait que toute courbe algébrique sur de genre admet un point défini sur une extension résoluble de . Nous établissons un lien entre les points des courbes de genre définis sur les extensions résolubles et la conjecture de Bombieri–Lang. Plus précisément, nous montrons que les variétés paramétrant les points définis sur les extensions de groupe de Galois résoluble fixé sont de type général. En outre, nous montrons que l’existence de certaines sous-variétés de ces variétés implique l’existence de morphismes résolubles définies sur la courbe.
Révisé le :
Accepté le :
Publié le :
Keywords: Higher genus curves, solvable points, quotient varieties, rational points, solvable morphisms
Rawson, James  1
CC-BY-ND 4.0
@article{JTNB_2024__36_3_1009_0,
author = {Rawson, James},
title = {Some {Obstructions} to {Solvable} {Points} on {Higher} {Genus} {Curves}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {1009--1019},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1304},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1304/}
}
TY - JOUR AU - Rawson, James TI - Some Obstructions to Solvable Points on Higher Genus Curves JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1009 EP - 1019 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1304/ DO - 10.5802/jtnb.1304 LA - en ID - JTNB_2024__36_3_1009_0 ER -
%0 Journal Article %A Rawson, James %T Some Obstructions to Solvable Points on Higher Genus Curves %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1009-1019 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1304/ %R 10.5802/jtnb.1304 %G en %F JTNB_2024__36_3_1009_0
Rawson, James. Some Obstructions to Solvable Points on Higher Genus Curves. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1009-1019. doi: 10.5802/jtnb.1304
[1] Kodaira dimension of symmetric powers, Proc. Am. Math. Soc., Volume 131 (2003) no. 5, pp. 1369-1372 | DOI | MR | Zbl
[2] Kodaira dimension of symmetric products of curves, MathOverflow, 2013 https://mathoverflow.net/q/123980 (version: 2013-03-08)
[3] Elements of Abstract Algebra, Dover Books on Mathematics Series, Dover Publications, 1984, xiv+324 pages
[4] Curves and Divisors on Algebraic Varieties, Springer (2001), pp. 1-36 | DOI
[5] Hyperbolic and Diophantine analysis, Bull. Am. Math. Soc., Volume 14 (1986) no. 2, pp. 159-205 | DOI | MR | Zbl
[6] Über die Automorphismengruppe von ., Math. Ann., Volume 228 (1977), pp. 279-292 http://eudml.org/doc/162996 | MR | Zbl
[7] Quadratic points on modular curves, Math. Comput., Volume 88 (2018), pp. 2461-2484 http://wrap.warwick.ac.uk/109403/ | DOI | Zbl | MR
[8] Solvable Points on Projective Algebraic Curves, Can. J. Math., Volume 56 (2004) no. 3, pp. 612-637 | DOI | MR | Zbl
[9] Hilbert’s Irreducibility Theorem, Jones and Bartlett Publishers (1992), pp. 19-34
[10] Classification of algebraic varieties, I, Compos. Math., Volume 27 (1973) no. 3, pp. 277-342 | MR | Zbl | Numdam
[11] Solvable points on genus one curves, Duke Math. J., Volume 142 (2008) no. 3, pp. 381-464 | DOI | MR | Zbl
[12] Sull’impossibilità di risolvere parametricamente per radicali un’equazione algebrica di genere a moduli generali, Rendiconti Accad. d. L. Roma (6), Volume 3 (1926), pp. 660-666 | Zbl
Cité par Sources :





