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Some Obstructions to Solvable Points on Higher
Genus Curves

par James RAWSON

Résumé. On sait que toute courbe algébrique sur Q de genre g ≤ 4 admet un
point défini sur une extension résoluble de Q. Nous établissons un lien entre
les points des courbes de genre g ≥ 5 définis sur les extensions résolubles
et la conjecture de Bombieri–Lang. Plus précisément, nous montrons que les
variétés paramétrant les points définis sur les extensions de groupe de Galois
résoluble fixé sont de type général. En outre, nous montrons que l’existence
de certaines sous-variétés de ces variétés implique l’existence de morphismes
résolubles définies sur la courbe.

Abstract. It is known that for a curve defined over Q of genus g ≤ 4, there
exists a point on the curve defined over a solvable extension of Q. We relate
points on curves of genus g ≥ 5 over solvable extensions to the Bombieri–Lang
conjecture. Specifically, we show that varieties parametrising points defined
over extensions with a fixed solvable Galois group are of general type. More-
over, we show the existence of certain subvarieties in these varieties imply the
existence of solvable morphisms from the curve.

1. Introduction
For curves of genus at least 2, Faltings’ theorem states there are only

finitely many points defined over any (fixed) number field. On the other
hand, points defined over the algebraic closure of Q are Zariski dense.
Therefore, it is natural to ask about points defined over some class of num-
ber fields. One such class of classical interest is the solvable number fields,
prompting the following.

Question. Given a curve C defined over a number field K, does there exist
a number field F/K, with solvable Galois group, such that C(F ) ̸= ∅?

Pál proved that for any geometrically irreducible curve of genus 0, 2, 3,
or 4 defined over a perfect field, there is at least one solvable point [8], and
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Wiles & Çiperani proved the same for genus 1 curves over Q, provided there
are points over every completion [11]. It is true for all C, when K is instead
a finite extension of Qp, since there are Qp points, and all finite extensions
of Qp are solvable. Pál [8] constructed counterexamples for almost all g ≥ 5
over local fields where the absolute Galois group of the residue field has
quotients isomorphic to S5, PSL3(F2) and PSL3(F3). The question remains
open for curves defined over number fields, as local fields of the type in Pál’s
construction do not arise as completions of a number field. We will show
there are “not too many” points for a curve of genus g ≥ 5 defined over
number fields having a given solvable Galois group, assuming the following
conjecture of Bombieri and, independently, Lang [5].

Conjecture (Bombieri–Lang). Let V be a variety of general type, then
rational points on V are not Zariski dense.

We first recall the definition of general type:

Definition 1. A smooth variety is of general type if its Kodaira dimension
is equal to the dimension of the variety

Unwinding the definition, gives the following.

Definition 2. Let V be an n-dimensional projective variety, then V is of
general type if for large enough r, the image of the map associated to rKV

(where KV is the canonical divisor) is n-dimensional.

The associated map in the above definition is the map (unique up to
isomorphisms of Pk) to Pk where each coordinate is an element of a basis of
L(rKV ) = {f ∈ k(V ) | Div(f) + rKV ≥ 0}. For example, a curve is of gen-
eral type if and only if it has genus g ≥ 2. In this case, the Bombieri–Lang
conjecture is simply Faltings’ theorem. In this paper, it will be necessary to
study singular varieties and so a notion of general type for such varieties is
needed. It is known that Kodaira dimension is a birational invariant, and
so the definition of general type can be extended as follows.

Definition 3. A variety is of general type if a desingularisation is of gen-
eral type.

We return to the problem of points with a given Galois group. We will
fix a number field, K, and assume the curve, C, is smooth, projective, and
geometrically irreducible.

Fix a transitive subgroup G ≤ Sn, then G acts on Cn by permuting
the factors. As G is finite and its orbits are contained in affine patches,
the quotient variety, Cn/G, exists. Points on the variety will be denoted
as [(P1, . . . , Pn)], where (P1, . . . , Pn) is a representative of the equivalence
class. Rational points on such varieties are closely related to points on the
original curve with given Galois group. More precisely:
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Proposition 1. A rational point on Cn/G is a union of Galois orbits of
points on C defined over fields with Galois group contained in G.

Proof. Let [(P1, . . . , Pn)] be a rational point on Cn/G, then for every
σ ∈ Gal(K/K), σ[(P1, . . . , Pn)] = [(P1, . . . , Pn)]. The Galois action is
coordinate-wise, and so [(P1, . . . , Pn)] = [(σP1, . . . , σPn)]. Therefore σPi is
Pj for some j. Let Pi1 , . . . , Pim be a Galois orbit, then the homomorphism

Gal(K(Pi1 , . . . , Pim)/K) → Sn

must have image contained in G. Repeating this for each Galois orbit gives
the desired statement. □

This motivates the study of these varieties: to understand points on the
curve with given Galois group. The rest of the paper is dedicated to the
structure of these varieties. To this end, we determine when these varieties
are of general type.

Theorem 1. Suppose G contains exactly m transpositions of the form
(1, i). Then Cn/G is of general type if and only if g(C) > m + 1.

This is proved in Section 2.

Corollary 1. If G is a solvable group and g(C) ≥ 5, then Cn/G is of
general type.

Proof. Suppose G contains exactly m transpositions of the form (1, i). Then
G contains a subgroup isomorphic to Sm+1. As G is solvable, m + 1 ≤ 4.
Then g(C) > m + 1, and so by Theorem 1, Cn/G is of general type. □

Combining the corollary with the Bombieri–Lang conjecture, we get the
following theorem.

Theorem 2. Assume the Bombieri–Lang conjecture. Let G be a solvable
group, and C be a smooth curve of genus at least 5. Then for any transitive
embedding G ↪→ Sn, the rational points on Cn/G are not Zariski dense.

For curves of genus 2, 3 and 4, we can easily compute the Kodaira di-
mension of Cn/G, where G is the Galois group of points defined by Pál’s
method.

For g(C) = 2, C is hyperelliptic, and so pulling rational points of P1 back
through the double covering generically gives points defined over number
fields with Galois group S2. The variety C2/S2 is birational to the Jacobian,
and has Kodaira dimension 0.

When g(C) = 3, C is generically a plane quartic. Intersecting the quartic
with lines in P2 gives points with Galois groups S4 generically. The quotient
C4/S4 is uniruled over the Jacobian, and so has Kodaira dimension −∞.
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For the g(C) = 4 case, C is generically the intersection of a quadric sur-
face and a cubic surface. Pál starts by taking a point on the quadric (gener-
ically defined over a quadratic extension), and finding a ruling through the
point (defined over a further quadratic extension). Intersecting this line
with the cubic surface gives a point of the curve defined generically over
a further S3 extension. The Galois group of this point is then generically
the subgroup of S12 generated by (1, 2), (1, 3), (1, 4, 7, 10) and (1, 4)(7, 10).
There are exactly 2 transpositions in the group that act non-trivially on 1,
and 4 > 3, so C12/G is of general type — its Kodaira dimension is 12.

The latter example shows it is not enough for Cn/G to be of general
type. In the g(C) = 4 case, the solvable points arise from a low degree
morphism from the curve to P1. For higher genus curves, there will not be
low degree morphisms, and so we do not expect there to be many solvable
points. We prove that if there are rational points distributed, in a precise
sense, like those arising from a morphism, then those points do indeed arise
from a morphism.

Definition 4. Fix a curve C. A rational curve D in Symn C is of fibre
type if D generically intersects the image of {P} × Cn−1 in a single point
(as P varies over C). A curve in Cn/G is of fibre type if it maps injectively
onto its image in Symn C and its image is of fibre type.

We prove the following theorem about curves of fibre type in Section 3.

Theorem 3. Let G be a transitive subgroup of Sn, and suppose there exists
a curve of fibre type in Cn/G with Zariski dense rational points, then C
has a morphism to P1 with Galois group G.

Combining this with the geometry of generic high genus curves gives
the following, which gives further control on the geometry of the varieties
Cn/G.

Corollary 2. Let C be a very general curve of genus ≥ 7, and G a solvable,
transitive subgroup of Sn for some n. Then Cn/G is a variety of general
type, and contains no curves of fibre type.

Proof. The statement about being of general type follows from the previous
corollary.

A theorem of Zariski [12] states that for a very general curve of genus ≥ 7,
the Galois group of any morphism C → P1 is not solvable. By Theorem 3,
the existence of a curve of fibre type (defined over an extension L/K) with
dense L-rational points, would imply the existence of a morphism from C
with Galois group G, contradicting Zariski’s theorem. Thus, there are no
curves of fibre type with dense L-rational points, for any field extension
L/K. As any curve of fibre type is rational, there exists a field extension
where its rational points are dense, thus there can be no such curves. □
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It is unclear if there exist curves defined over K such that the hypothesis
is satisfied, as very general entails the removal of countably many subvari-
eties of the moduli space, and the algebraic closure of K is also countable.
The fibre type condition is quite restrictive, but for n near the gonality of
C, the dimensions of the fibres of Symn C over Jac(C) are small enough
that this behaviour is typical in the symmetric power.

2. When Quotients are of General Type
2.1. The no transpositions case. First, we prove the following special
case,

Theorem 4. Let C be a smooth curve of genus at least 2, and let G ⊂ Sn be
a subgroup that contains no transpositions. Then Cn/G is of general type.

We first observe that as G is a subgroup of Sn, there is a map π2 :
Cn/G → Symn C so that π1 : Cn → Symn C factors through Cn → Cn/G.
The variety Cn/G may be singular, and so it needs to be replaced by a
desingularisation, X, which has a birational morphism X → Cn/G. Com-
posing this map with π2 gives a map ϕ : X → Symn C. Although π2 is
finite, ϕ may not be, as the map X → Cn/G may contract the pre-image
of the singular locus, but it is generically finite. This is summarised in the
following commutative diagram.

Cn

Cn/G X

Symn C

π1

π2

ϕ

The variety Cn/G can only be singular where a point of Cn is fixed by
some non-trivial g ∈ G, as elsewhere the quotient map Cn → Cn/G is
finite étale. As G contains no transpositions, if (P1, . . . , Pn) is fixed by a
non-trivial element of G, either at least two pairs of Pi are equal, or at least
three Pi are equal. Therefore the singular locus is contained in a subvariety
of codimension at least 2.

To prove the theorem, some results are needed about the structure of
the maps πi.

Lemma 1. The ramification locus of π1 is the set ∆ = {(P1, . . . , Pn) |
Pi = Pj for some i ̸= j}, and under the hypotheses of the theorem, the
ramification locus of π2, away from the singular points of Cn/G, is the
image of ∆ under the quotient map. The ramification index of both maps
along the respective divisors is 2.
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Proof. We start with π1. The pre-image, π−1
1 (P1 + · · · + Pn), generically

consists of n! points, (Pσ(1), . . . , Pσ(n)) as σ ranges over Sn. There is, there-
fore, ramification precisely when two of these images collide, when Pi = Pj

for some i ̸= j.
As π1 factors through Cn/G, the map π2 is unramified outside of the

image of ∆. The ramification index of π1 at π1(R), for some R ∈ ∆, is
equal to the size of its stabiliser in Sn. For a generic element of ∆, this is 2
(as the stabiliser is just the transposition switching the identical entries).
Similarly, the ramification index for the map to Cn/G at R is the size of
its stabiliser in G. Away from the singular locus, this stabiliser is trivial.
Therefore, as ramification indices are multiplicative under composition, the
ramification index of π2 at the image of R must be equal to that of π1 at
R. In particular, the map is ramified there. □

And now to prove Theorem 4,

Proof. As being of general type (for smooth varieties) is a statement about
canonical divisors, the first step is to relate KCn and KX . We will obtain
such a relation by considering the two maps to Symn C.

There is a generalisation of the Riemann–Hurwitz formula for a generi-
cally finite morphism of smooth varieties f : X → Y , which states KX ≃
f∗KY +R+E where R is an effective divisor supported on the ramification
locus, and E is an effective divisor supported on the exceptional locus [4].
Applying this to π1 gives the following, as the ramification index is 2 on
the divisor ∆.

KCn ≃ π∗
1KSymn C + ∆

This can be pushed forward to yield:
n!KSymn C ≃ π1∗KCn − π1∗∆

By the preceding lemma, π2 is ramified along the image of ∆, except for
the codimension 2 or smaller set where Cn/G is possibly singular. Therefore
ϕ must also be ramified along the image of ∆, again with ramification
index 2. Applying the same formula to ϕ, and denoting the image of ∆ in
X as ∆′, and the ramification and exceptional locus of ϕ as ∆′ + R′ and E′

respectively.
KX ≃ ϕ∗KSymn C + ∆′ + R′ + E′

Combining both formulae:
n!KX ≥ ϕ∗π1∗KCn − ϕ∗π1∗∆ + n!∆′ + n!E′

The divisor π1∗∆ is the image of ∆ under π1, counted with multiplicity n!
2 ,

as this is the degree of π1 restricted to ∆. Similarly, ϕ∗π1∗∆ is supported
on the sum of ∆′ and some exceptional divisors. The component supported
on ∆′ has multiplicity n!, as ϕ is ramified with index 2 along ∆′. The
exceptional components will be contained within n!E, therefore n!KX ≥
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ϕ∗π1∗KCn . Pullbacks only increase the number of global sections, thus to
show Cn/G is of general type it is enough to check that π1∗KCn has n
algebraically independent sections.

As C is of general type, KC has a non-trivial section f . Define fi on Cn

by fi(P1, . . . , Pn) = f(Pi), this is a section of KCn . Taking the elementary
symmetric polynomials in fi give sections of KCn which are G-invariant,
and are algebraically independent. These are therefore sections of π1∗KCn ,
and the result follows. □

This establishes the main theorem in the case m = 0.

2.2. Proof of Theorem 1. The general case will be proven by factor-
ing the quotient map through symmetric powers, before using a result on
symmetric powers of higher dimensional varieties to conclude. Before this,
we need some lemmas on the structure of transitive subgroups of Sn. The
first of which is a slight generalisation of a result in Clark’s “Elements of
Abstract Algebra” [3, p. 64–65].

Lemma 2. Let G ⊂ Sn be a transitive subgroup, and suppose it contains
exactly m transpositions of the form (1, i), then m + 1 | n.

Proof. Define an equivalence relation on {1, . . . , n} by i ∼ j if i = j
or (i, j) ∈ G. Reflexivity and symmetry are obvious from the definition.
Suppose i ∼ j and j ∼ k, then (i, j), (j, k) ∈ G. As G is a subgroup,
(i, k) = (j, k)(i, j)(j, k) ∈ G, and so i ∼ k. Therefore ∼ is transitive, and it
defines an equivalence relation.

Consider an equivalence class [i]. By transitivity of G, there is a σ ∈ G
such that σ(1) = i. If j ∈ [i], (i, j) ∈ G, and so (1, σ−1(j)) = σ−1(i, j)σ ∈ G,
and σ−1(j) ∈ [1]. Therefore |[i]| ≤ |[1]|, and by symmetry, the inequality
holds in the opposite direction, so all equivalence classes have the same size.
As [1] contains 1 along with an element for each transposition containing
1, |[1]| = m + 1. Partitioning {1, . . . , n} into equivalency classes gives the
divisibility. □

The second lemma describes a quotient of transitive subgroups.

Lemma 3. Let G ⊂ Sn and m be as before, let n′ = n
m+1 and define

H to be the subgroup of G generated by all transpositions, then H is a
normal subgroup, H ∼= Sm+1 × . . . × Sm+1 and there is a natural inclusion
G/H ↪→ Sn′.

Proof. Group the transpositions according to the equivalence classes of the
previous lemma. Transpositions in the same class will generate a symmetric
group on the size of the class, m+1, and transpositions from different classes
commute. This gives H ∼= Sm+1 × . . . × Sm+1, with the product running
over equivalence classes.
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Consider the transpositions corresponding to the first equivalence class;
these generate a subgroup H ′. The conjugates of H ′ are the groups gener-
ated by the other equivalence classes. Let g ∈ G be an element fixing all
the conjugates of H ′ under conjugation. As g(i, j)g−1 = (g(i), g(j)), this
shows g(i) ∼ i for all i, therefore g ∈ H. Conversely, all elements of H
preserve H ′ and its conjugates. The homomorphism G → Sn′ induced by
the conjugation action, therefore, has kernel H. □

One final result is needed, describing the geometry of symmetric powers.
This result does not seem to appear in the literature, although similar
results do. We therefore give it here, along with the proof provided by
MathOverflow user, Olivier Benoist [2].

Lemma 4. Let C be a curve of genus g. The variety Symn C is of general
type for n < g, (birational to) an abelian variety for n = g and uniruled for
n > g.

Proof. The statements for n ≥ g follow from Riemann–Roch and the defi-
nition of the Jacobian variety, so it remains to prove it for n < g.

The Abel–Jacobi map gives a birational map Symn C → Jac(C), and so
it is enough to prove the image, Wn, is of general type. If it were not, by
a theorem of Ueno [10], it would contain an abelian variety A such that
A + Wn = Wn. In particular, as Wg−1 is expressible as the sum of elements
from Wn, Wg−1 is invariant under addition by A. For any x /∈ Wg−1, the
locus A + x is positive dimensional and disjoint from Wg−1, but Wg−1 is an
ample divisor and so must intersect any positive dimensional subvariety. □

Finally, a proof of the main theorem

Proof of Theorem 1. Let G be a transitive subgroup of Sn. If m = 0, then
the previous section gives the desired result, otherwise, m > 0, and H (as
defined in Lemma 3) is non-trivial. The map Cn → Cn/G factors through
Cn/H, and this quotient is

(
Symm+1 C

)n′

. Let V = Symm+1 C, then V is of
general type if and only if g > m+1 by the preceding lemma. It remains to
understand V n′

/(G/H), but this maps surjectively onto Symn′
V through

a finite map. The symmetric power of a variety of dimension greater than
1 is of general type if and only if the variety is of general type [1]. If g >
m+1, then by pulling back the canonical divisor to (a desingularisation of)
Symn′

V to V n′
/(G/H), shows V n′

/(G/H) is of general type. If g ≤ m + 1,
then V is not of general type, so V n′ is not, and so V n′

/(G/H) is not
either. □
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3. Rational Curves on Cn/G

We start by considering rational curves in Symn C.

Lemma 5. Suppose Symn C contains a curve of fibre type, then C has a
morphism, f , of degree at most n to P1. Moreover, the fibres of this map
as divisors are the points of the rational curve, up to fixed points

Proof. Let D be the rational curve. There is a morphism C × Symn−1 C →
Symn C given by symmetrisation, and let D′ be the pre-image of D under
this map. Projection onto the first factor of the product gives a morphism
D′ → C. For a generic P ∈ C, there is a unique point of D′ above P ,
as D is of fibre type, therefore D′ contains an irreducible component, C ′,
isomorphic to C. There is a birational map D 99K P1, and composing with
the symmetrisation map gives C ′ → D′ → D 99K P1. This extends by
completeness to a morphism f : C = C ′ → P1.

As the symmetrisation map has degree n, f has degree at most n. The
fibres of f are as stated, since points of D′ are the points of D where one
of the points in the support of the divisor is distinguished, and fixed points
are removed as they belong to a separate component of D′. □

From this construction it is also clear that the field of definition of f is
the same as the field of definition of the rational curve.

We can now prove Theorem 3, that curves of fibre type in Cn/G imply
the existence of rational maps on C with Galois group G.

Proof of Theorem 3. As Cn/G contains a curve of fibre type with Zariski
dense rational points, C has a rational map, f , to P1. The fibres of f over
rational points are rational points on Cn/G, in particular, the Galois group
of any fibre of f above a rational point is contained in G. By Hilbert’s
Irreducibility Theorem for Galois covers [9], the Galois group of f is G. □

We illustrate the utility of this result with the following

Theorem 5. There are at most finitely many cyclic number fields, L, of
degree 3 over Q, such that X0(34)(L) ̸= X0(34)(Q), where X0(34) denotes
the modular curve of level Γ0(34).

Proof. Ozman and Siksek list X0(34) as a non-hyperelliptic genus 3 curve,
where the Jacobian has rank 0 [7].

There is a sequence of maps X0(34)3/C3 → Sym3 X0(34) → J0(34).
There are only finitely many rational points on the right hand side, there-
fore the rational points on Sym3 X0(34) are contained in a finite collection
of rational curves, except for finitely many exceptions. These curves are
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necessarily of fibre type, since X0(34) is not hyperelliptic and so the
Riemann–Roch space of a degree 3 divisor is at most 2 dimensional. Pulling
back each rational curve to X0(34)3/C3 give one of two cases, a pair of ra-
tional curves or an irreducible double cover of P1.

In the former case, each must map injectively onto their image, and would
be of fibre type. This would imply X0(34) has a map to P1 with Galois group
C3. In particular, X0(34) would have an automorphism of order 3, but the
automorphism group is a product of cyclic groups of order 2 [6].

Therefore the pre-image of any rational curve in the symmetric power is
a double cover. The double cover ramifies over points of the form 2P + Q,
and these are smooth points unless they are of the form 3P . Suppose the
double cover was not smooth in at least 2 points, then there are divisors
3P and 3Q in the same curve on the symmetric power, and so are linearly
equivalent. As P ̸= Q, 3P has a non-trivial section, and so by Riemann–
Roch, KX0(34) − 3P is effective. Therefore KX0(34) ∼ 3P + R, and similarly,
KX0(34) ∼ 3Q + S for some points R, S ∈ X0(34). Comparing these, shows
R ∼ S, and so R = S. For the canonical embedding, the canonical divisor is
a hyperplane section, so P and Q are flexes, and their tangents meet at R.

Using an explicit model for X0(34) over the rationals, as V(F (X, Y, Z)) ⊂
P2, the flex points can be computed as the vanishing locus of the Hessian
determinant of F along the curve. As the intersection of a quartic curve and
a sextic, there are 24 such points. Using Groebner bases, these intersection
points can be computed, and their coordinates are defined by a degree 24
irreducible polynomial. By working in a number field over which one of the
flex points is defined, the tangent line to that point can be computed. As
the tangent line meets the flex point with multiplicity 3, the line meets
the curve at a fourth point which must be defined over the same field. The
coordinates of this point each satisfy an irreducible degree 24 polynomial,
and so each conjugate corresponds to exactly one flex, and no two flex lines
meet at the same point on the curve.

The pullback of a rational curve on Sym3 X0(34) therefore has at most
1 non-smooth ramification point. A triple cover of P1 by a genus 3 curve
has total ramification degree 10, and so the pullback of a rational curve in
the symmetric cube ramifies over its image at either 8 or 10 smooth points,
corresponding to geometric genus 3 or 4 respectively. There can be at most
finitely many rational points on such curves, and so there are finitely many
points on X0(34)3/C3. □
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