Simultaneous Diophantine approximation with a divisibility condition
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 987-1008

In a previous paper ([9]), we studied certain sequences of simultaneous rational approximations in 2 which present some analogy with the continued fractions. We got results around the Littlewood conjecture by using such approximations. Here we show that these results also hold when we add divisibility conditions.

Dans un article précédent ([9]), nous étudiions des approximations rationnelles simultanées dans 2 qui présentent une certaine analogie avec les fractions continues. Nous obtenions des résultats autour de la conjecture de Littlewood en utilisant de telles approximations. Nous montrons ici que ces résultats restent vrais si l’on ajoute des conditions de divisibilité.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1303
Classification : 11J13, 11J68
Keywords: Littlewood conjecture. Simultaneous Diophantine approximation. Divisibility.
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_987_0,
     author = {Mathan, Bernard de},
     title = {Simultaneous {Diophantine} approximation with a divisibility condition},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {987--1008},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     doi = {10.5802/jtnb.1303},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1303/}
}
TY  - JOUR
AU  - Mathan, Bernard de
TI  - Simultaneous Diophantine approximation with a divisibility condition
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 987
EP  - 1008
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1303/
DO  - 10.5802/jtnb.1303
LA  - en
ID  - JTNB_2024__36_3_987_0
ER  - 
%0 Journal Article
%A Mathan, Bernard de
%T Simultaneous Diophantine approximation with a divisibility condition
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 987-1008
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1303/
%R 10.5802/jtnb.1303
%G en
%F JTNB_2024__36_3_987_0
Mathan, Bernard de. Simultaneous Diophantine approximation with a divisibility condition. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 987-1008. doi: 10.5802/jtnb.1303

[1] Adiceam, Faustin; Nesharim, Erez; Lunnon, Fred On the t-adic Littlewood conjecture, Duke Math. J., Volume 170 (2021) no. 10, pp. 2371-2419 | MR | Zbl

[2] Badziahin, Dmitry; Bugeaud, Yann; Einsiedler, Manfred; Kleinbock, Dmitry On the complexity of a putative counterexample to the p-adic Littlewood conjecture, Compos. Math., Volume 151 (2015) no. 9, pp. 1647-1662 | MR | DOI | Zbl

[3] Baker, Alan On an analogue of Littlewood’s Diophantine approximation problem, Mich. Math. J., Volume 11 (1964), pp. 247-250 | MR | Zbl

[4] Bugeaud, Yann On the multiples of a badly approximable vector, Acta Arith., Volume 168 (2015) no. 1, pp. 71-81 | DOI | MR | Zbl

[5] Cassels, J. W. S.; Swinnerton-Dyer, H. P. F. On the product of three homogeneous linear forms and indefinite ternary quadratic forms, Philos. Trans. R. Soc. Lond., Ser. A, Volume 248 (1955), pp. 73-96 | MR | Zbl

[6] Davenport, Harold; Lewis, D. J. An analogue of a problem of Littlewood, Mich. Math. J., Volume 10 (1963), pp. 157-160 | MR | Zbl

[7] Einsiedler, Manfred; Katok, Anatole; Lindenstrauss, Elon Invariant measures and the set of exceptions to the Littlewood conjecture, Ann. Math. (2), Volume 164 (2006) no. 2, pp. 513-560 | Zbl | DOI

[8] Lang, Serge Algebraic numbers, Addison-Wesley Series in Mathematics, Addison-Wesley Publishing Group, 1964, ix+163 pages | Zbl | MR

[9] de Mathan, Bernard On certain simultaneous rational approximations in 2 and certain rational approximations in p , Monatsh. Math., Volume 200 (2023) no. 4, pp. 849-901 | Zbl | DOI | MR

[10] de Mathan, Bernard; Teulié, Olivier Problèmes diophantiens simultanés, Monatsh. Math., Volume 143 (2004) no. 3, pp. 229-245 | DOI | Zbl | MR

[11] Peck, Leslie G. Simultaneous rational approximations to algebraic numbers, Bull. Am. Math. Soc., Volume 67 (1961), pp. 197-201 | Zbl | DOI | MR

Cité par Sources :