Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 947-965

Let F[x,y] be an irreducible binary form of degree d7 and content one. Let α be a complex root of F(x,1) and assume that the field extension (α)/ is Galois. We prove that, for every sufficiently large prime power p k , the number of solutions to the Diophantine equation of Thue type

|F(x,y)|=hp k

in integers (x,y,h) such that

gcd(x,y)=1and1h(p k ) λ

does not exceed 24. Here λ=λ(d) is a certain positive, monotonously increasing function that approaches one as d tends to infinity. We also prove that, for every sufficiently large prime number p, the number of solutions to the Diophantine equation of Thue–Mahler type

|F(x,y)|=hp z

in integers (x,y,z,h) such that

gcd(x,y)=1,z1and1h(p z ) 10d-61 20d+40

does not exceed 3984. Our proofs follow from the combination of two principles of Diophantine approximation, namely the generalized non-Archimedean gap principle and the Thue–Siegel principle.

Soit F une forme binaire irréductible de degré d7 à coefficients entiers dont le plus grand diviseur commun est égal à 1. Soit α une racine complexe de F(x,1). Supposons que l’extension (α)/ est galoisienne. Nous prouvons que, pour toute puissance p k suffisamment grande d’un nombre premier p, le nombre de solutions de l’équation diophantienne de type Thue

|F(x,y)|=hp k

en nombres entiers (x,y,h) tels que

gcd(x,y)=1et1h(p k ) λ

est borné par 24. Ici λ=λ(d) est une fonction positive et monotone croissante qui s’approche de 1 lorsque d tend vers l’infini. Nous prouvons également que, pour tout nombre premier p suffisamment grand, le nombre de solutions de l’équation diophantienne de type Thue–Mahler

|F(x,y)|=hp z

en entiers (x,y,z,h) tels que

gcd(x,y)=1,z1et1h(p z ) 10d-61 20d+40

ne dépasse pas 3984. Nos preuves découlent de la combinaison de deux principes d’approximation diophantienne, à savoir le principe d’écart non-archimédien généralisé et le principe de Thue–Siegel.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1301
Classification : 11D59
Keywords: Thue equation, Thue–Mahler equation, Diophantine approximation, binary form

Mosunov, Anton  1

1 Cornell University 212 Garden Avenue Ithaca, NY 14853, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_947_0,
     author = {Mosunov, Anton},
     title = {Absolute {Bound} {On} the {Number} of {Solutions} of {Certain} {Diophantine} {Equations} of {Thue} and {Thue{\textendash}Mahler} {Type}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {947--965},
     year = {2024},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     doi = {10.5802/jtnb.1301},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1301/}
}
TY  - JOUR
AU  - Mosunov, Anton
TI  - Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 947
EP  - 965
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1301/
DO  - 10.5802/jtnb.1301
LA  - en
ID  - JTNB_2024__36_3_947_0
ER  - 
%0 Journal Article
%A Mosunov, Anton
%T Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 947-965
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1301/
%R 10.5802/jtnb.1301
%G en
%F JTNB_2024__36_3_947_0
Mosunov, Anton. Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 947-965. doi: 10.5802/jtnb.1301

[1] Bombieri, Enrico On the Thue–Siegel–Dyson theorem, Acta Math., Volume 148 (1982), pp. 255-296 | DOI | Zbl

[2] Bombieri, Enrico; Mueller, Julia On effective measures of irrationality for a/b r and related numbers, J. Reine Angew. Math., Volume 342 (1983), pp. 173-196 | Zbl | MR

[3] Bombieri, Enrico; Schmidt, Wolfgang M. On Thue’s equation, Invent. Math., Volume 88 (1987), pp. 69-81 | DOI | Zbl

[4] Dyson, Freeman The approximation of algebraic numbers by rationals, Acta Math., Volume 79 (1947), pp. 225-240 | DOI | MR | Zbl

[5] Erdős, Pál; Mahler, Kurt On the number of integers which can be represented by a binary form, J. Lond. Math. Soc., Volume 13 (1938), pp. 134-139 | DOI | MR | Zbl

[6] Erdős, Pál; Stewart, Cameron L.; Tijdeman, Robert Some Diophantine equations with many solutions, Compos. Math., Volume 66 (1988) no. 1, pp. 37-56 | Zbl | MR

[7] Evertse, Jan-Hendrik On equations in S-units and the Thue–Mahler equation, Invent. Math., Volume 75 (1984), pp. 561-584 | DOI | MR | Zbl

[8] Fouvry, Étienne; Waldschmidt, Michel Sur la représentation des entiers par les formes cyclotomiques de grand degré, Bull. Soc. Math. Fr., Volume 148 (2020) no. 2, pp. 253-282 | Zbl | DOI | MR

[9] Lewis, Donald; Mahler, Kurt Representation of integers by binary forms, Acta Arith., Volume 6 (1961), pp. 333-363 | DOI | Zbl

[10] Mahler, Kurt Zur Approximation algebraischer Zahlen. II. Über die Anzahl der Darstellungen ganzer Zahlen durch Binärformen, Math. Ann., Volume 108 (1933), pp. 37-55 | DOI | Zbl

[11] Mosunov, Anton On the automorphism group of a binary form associated with algebraic grigonometric quantities, J. Number Theory, Volume 240 (2022), pp. 325-356 | DOI | MR | Zbl

[12] Mosunov, Anton On the generalization of the gap principle, Period. Math. Hung., Volume 87 (2023) no. 1, pp. 119-151 | DOI | MR | Zbl

[13] Roth, Klaus Rational approximations to algebraic numbers, Mathematika, Volume 2 (1955) no. 3, pp. 1-20 | DOI | MR | Zbl

[14] Siegel, Carl L. Approximation algebraischer Zahlen, Math. Z., Volume 10 (1921), pp. 173-213 | DOI | MR | Zbl

[15] Stewart, Cameron L. On the number of solutions of polynomial congruences and Thue equations, J. Am. Math. Soc., Volume 4 (1991), pp. 793-835 | MR | Zbl | DOI

[16] Stewart, Cameron L. Cubic Thue equations with many solutions, Int. Math. Res. Not., Volume 2008 (2008), rnn040, 11 pages | MR | Zbl

[17] Thue, Axel Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., Volume 135 (1909), pp. 284-305 | DOI | MR | Zbl

[18] Thunder, Jeffrey L. Thue equations and lattices, Ill. J. Math., Volume 59 (2015) no. 4, pp. 999-1023 | MR | Zbl

Cité par Sources :