Let be an irreducible binary form of degree and content one. Let be a complex root of and assume that the field extension is Galois. We prove that, for every sufficiently large prime power , the number of solutions to the Diophantine equation of Thue type
in integers such that
does not exceed . Here is a certain positive, monotonously increasing function that approaches one as tends to infinity. We also prove that, for every sufficiently large prime number , the number of solutions to the Diophantine equation of Thue–Mahler type
in integers such that
does not exceed . Our proofs follow from the combination of two principles of Diophantine approximation, namely the generalized non-Archimedean gap principle and the Thue–Siegel principle.
Soit une forme binaire irréductible de degré à coefficients entiers dont le plus grand diviseur commun est égal à Soit une racine complexe de Supposons que l’extension est galoisienne. Nous prouvons que, pour toute puissance suffisamment grande d’un nombre premier , le nombre de solutions de l’équation diophantienne de type Thue
en nombres entiers tels que
est borné par . Ici est une fonction positive et monotone croissante qui s’approche de lorsque tend vers l’infini. Nous prouvons également que, pour tout nombre premier suffisamment grand, le nombre de solutions de l’équation diophantienne de type Thue–Mahler
en entiers tels que
ne dépasse pas . Nos preuves découlent de la combinaison de deux principes d’approximation diophantienne, à savoir le principe d’écart non-archimédien généralisé et le principe de Thue–Siegel.
Révisé le :
Accepté le :
Publié le :
Keywords: Thue equation, Thue–Mahler equation, Diophantine approximation, binary form
Mosunov, Anton  1
CC-BY-ND 4.0
@article{JTNB_2024__36_3_947_0,
author = {Mosunov, Anton},
title = {Absolute {Bound} {On} the {Number} of {Solutions} of {Certain} {Diophantine} {Equations} of {Thue} and {Thue{\textendash}Mahler} {Type}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {947--965},
year = {2024},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {36},
number = {3},
doi = {10.5802/jtnb.1301},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.1301/}
}
TY - JOUR AU - Mosunov, Anton TI - Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 947 EP - 965 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1301/ DO - 10.5802/jtnb.1301 LA - en ID - JTNB_2024__36_3_947_0 ER -
%0 Journal Article %A Mosunov, Anton %T Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type %J Journal de théorie des nombres de Bordeaux %D 2024 %P 947-965 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1301/ %R 10.5802/jtnb.1301 %G en %F JTNB_2024__36_3_947_0
Mosunov, Anton. Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 947-965. doi: 10.5802/jtnb.1301
[1] On the Thue–Siegel–Dyson theorem, Acta Math., Volume 148 (1982), pp. 255-296 | DOI | Zbl
[2] On effective measures of irrationality for and related numbers, J. Reine Angew. Math., Volume 342 (1983), pp. 173-196 | Zbl | MR
[3] On Thue’s equation, Invent. Math., Volume 88 (1987), pp. 69-81 | DOI | Zbl
[4] The approximation of algebraic numbers by rationals, Acta Math., Volume 79 (1947), pp. 225-240 | DOI | MR | Zbl
[5] On the number of integers which can be represented by a binary form, J. Lond. Math. Soc., Volume 13 (1938), pp. 134-139 | DOI | MR | Zbl
[6] Some Diophantine equations with many solutions, Compos. Math., Volume 66 (1988) no. 1, pp. 37-56 | Zbl | MR
[7] On equations in -units and the Thue–Mahler equation, Invent. Math., Volume 75 (1984), pp. 561-584 | DOI | MR | Zbl
[8] Sur la représentation des entiers par les formes cyclotomiques de grand degré, Bull. Soc. Math. Fr., Volume 148 (2020) no. 2, pp. 253-282 | Zbl | DOI | MR
[9] Representation of integers by binary forms, Acta Arith., Volume 6 (1961), pp. 333-363 | DOI | Zbl
[10] Zur Approximation algebraischer Zahlen. II. Über die Anzahl der Darstellungen ganzer Zahlen durch Binärformen, Math. Ann., Volume 108 (1933), pp. 37-55 | DOI | Zbl
[11] On the automorphism group of a binary form associated with algebraic grigonometric quantities, J. Number Theory, Volume 240 (2022), pp. 325-356 | DOI | MR | Zbl
[12] On the generalization of the gap principle, Period. Math. Hung., Volume 87 (2023) no. 1, pp. 119-151 | DOI | MR | Zbl
[13] Rational approximations to algebraic numbers, Mathematika, Volume 2 (1955) no. 3, pp. 1-20 | DOI | MR | Zbl
[14] Approximation algebraischer Zahlen, Math. Z., Volume 10 (1921), pp. 173-213 | DOI | MR | Zbl
[15] On the number of solutions of polynomial congruences and Thue equations, J. Am. Math. Soc., Volume 4 (1991), pp. 793-835 | MR | Zbl | DOI
[16] Cubic Thue equations with many solutions, Int. Math. Res. Not., Volume 2008 (2008), rnn040, 11 pages | MR | Zbl
[17] Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., Volume 135 (1909), pp. 284-305 | DOI | MR | Zbl
[18] Thue equations and lattices, Ill. J. Math., Volume 59 (2015) no. 4, pp. 999-1023 | MR | Zbl
Cité par Sources :





