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Absolute Bound On the Number of Solutions of
Certain Diophantine Equations of Thue and

Thue–Mahler Type

par Anton MOSUNOV

Résumé. Soit F une forme binaire irréductible de degré d ≥ 7 à coefficients
entiers dont le plus grand diviseur commun est égal à 1. Soit α une racine
complexe de F (x, 1). Supposons que l’extension Q(α)/Q est galoisienne. Nous
prouvons que, pour toute puissance pk suffisamment grande d’un nombre pre-
mier p, le nombre de solutions de l’équation diophantienne de type Thue

|F (x, y)| = hpk

en nombres entiers (x, y, h) tels que
gcd(x, y) = 1 et 1 ≤ h ≤ (pk)λ

est borné par 24. Ici λ = λ(d) est une fonction positive et monotone croissante
qui s’approche de 1 lorsque d tend vers l’infini. Nous prouvons également que,
pour tout nombre premier p suffisamment grand, le nombre de solutions de
l’équation diophantienne de type Thue–Mahler

|F (x, y)| = hpz

en entiers (x, y, z, h) tels que

gcd(x, y) = 1, z ≥ 1 et 1 ≤ h ≤ (pz)
10d−61
20d+40

ne dépasse pas 3984. Nos preuves découlent de la combinaison de deux prin-
cipes d’approximation diophantienne, à savoir le principe d’écart non-archi-
médien généralisé et le principe de Thue–Siegel.

Abstract. Let F ∈ Z[x, y] be an irreducible binary form of degree d ≥ 7
and content one. Let α be a complex root of F (x, 1) and assume that the field
extension Q(α)/Q is Galois. We prove that, for every sufficiently large prime
power pk, the number of solutions to the Diophantine equation of Thue type

|F (x, y)| = hpk

in integers (x, y, h) such that
gcd(x, y) = 1 and 1 ≤ h ≤ (pk)λ

Manuscrit reçu le 31 mars 2023, révisé le 25 août 2023, accepté le 7 octobre 2023.
2020 Mathematics Subject Classification. 11D59.
Mots-clefs. Thue equation, Thue–Mahler equation, Diophantine approximation, binary form.
The author is grateful to Prof. Cameron L. Stewart for his wise supervision, as well as to the

anonymous referees for their suggestions on how to improve the article.



948 Anton Mosunov

does not exceed 24. Here λ = λ(d) is a certain positive, monotonously increas-
ing function that approaches one as d tends to infinity. We also prove that,
for every sufficiently large prime number p, the number of solutions to the
Diophantine equation of Thue–Mahler type

|F (x, y)| = hpz

in integers (x, y, z, h) such that

gcd(x, y) = 1, z ≥ 1 and 1 ≤ h ≤ (pz)
10d−61
20d+40

does not exceed 3984. Our proofs follow from the combination of two principles
of Diophantine approximation, namely the generalized non-Archimedean gap
principle and the Thue–Siegel principle.

1. Introduction
In this article we analyze certain Diophantine equations of Thue and

Thue–Mahler type. A Thue equation is a Diophantine equation of the form

(1.1) F (x, y) = m,

where F ∈ Z[x, y] is a homogeneous polynomial of degree d ≥ 3 with
nonzero discriminant D(F ), m is a fixed positive integer, and x, y are in-
teger variables. In 1909 Thue [17] proved that (1.1) has only finitely many
solutions in integers x and y, provided that F is irreducible. In 1933, assum-
ing that F is irreducible, Mahler established the existence of a number C1,
dependent only on F , such that the number of primitive solutions to (1.1)
(that is, integer solutions with x and y coprime) does not exceed C

1+ω(m)
1 ,

where ω(m) denotes the number of distinct prime divisors of m [10]. In fact,
his result was even stronger: if instead of (1.1) we consider the equation

(1.2) F (x, y) = pz1
1 · · · pzℓ

ℓ ,

where p1, . . . , pℓ are distinct fixed prime numbers, then it follows from
Mahler’s argument that the number of integer solutions (x, y, z1, . . . , zℓ)
to (1.2), with x, y coprime and zi non-negative, does not exceed C1+ℓ

1 . The
Diophantine equation (1.2) is called a Thue–Mahler equation. Further im-
provements to Mahler’s estimate have been made by Erdős and Mahler [5],
and Lewis and Mahler [9].

It was conjectured by Siegel that the number of primitive solutions
to (1.1) should not depend on the coefficients of F . The truth of Siegel’s
conjecture was established in 1984 by Evertse [7], who proved that the
number of primitive solutions to (1.2) does not exceed

(1.3) 2 · 7d3(2ℓ+3),

where a binary form F of degree d was assumed to be divisible by at
least three pairwise linearly independent linear forms in some algebraic
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number field. An estimate on the number of solutions to (1.1) thus follows
by replacing the number ℓ in (1.3) with ω(m).

The number of integer solutions to (1.1), not necessarily primitive, can be
large. For example, in 2008 Stewart [16] proved that when F is of degree 3
and D(F ) ̸= 0 then there is a positive number c, which depends only on F ,
such that the number of integer solutions to (1.1) is at least c(log m)1/2 for
infinitely many positive integers m. If, however, we restrict our attention to
primitive solutions only, then their number does not seem to increase as m
grows. In 1987 it was conjectured by Erdős, Stewart and Tijdeman [6] that
the number of primitive solutions to (1.1) does not exceed some constant,
which depends only on d. In the same year Bombieri and Schmidt [3] proved
that the number of primitive solutions to (1.1) does not exceed

C2d1+ω(m),

where the constant C2 is absolute. In 1991 Stewart [15] replaced ω(m) in
the above estimate with ω(g), where g is a divisor of m satisfying g ≫F

m(4+d)/3d (this is the statement of [15, Theorem 1] with ε = 1/2). In the
same paper, Stewart conjectured the following.
Conjecture 1.1. (Stewart, [15, Section 6]) There exists an absolute con-
stant c0 such that for every binary form F ∈ Z[x, y] with nonzero discrimi-
nant and degree at least three there exists a number C, which depends only
on F , such that if m is an integer larger than C, then the Thue equa-
tion (1.1) has at most c0 solutions in coprime integers x and y.

The most notable step forward towards Conjecture 1.1 can be found
in the work of Thunder [18, Theorems 3 and 5]. Based on [15] he gives a
heuristic argument that supports the conjecture of Stewart when the degree
of the form F is at least five. Roughly speaking, every primitive solution
to (1.1) lies in a sublattice of Z2 of determinant m′, where m′ is a divisor
of m. Furthermore, it corresponds to the first Minkowski minimum of this
sublattice. One can then show that the first and second Minkowski minima
must drastically differ in size, making this sublattice very skewed. As m
grows unboundedly, the proportion of these skewed sublattices among all
lattices of the same determinant tends to zero, and so we do not expect
many of them to occur, unless primitive solutions that they contain are
connected to each other algebraically (e.g., via a linear fractional transfor-
mation, as it is the case for the results stated below).

By using a generalization of the non-Archmiedean gap principle estab-
lished in [12], we develop new methods for estimating the number of prim-
itive solutions of (1.1) and (1.2) in the case ℓ = 1, thus providing theoreti-
cal evidence in support of Stewart’s conjecture. Instead of looking at (1.1)
and (1.2) though, we study Diophantine equations of the form

|F (x, y)| = hpz,
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with pz a prime power and h a positive integer variable, which is “small” in
comparison to pz. We demonstrate that it is possible to provide an absolute
bound on their number of primitive solutions, provided that F is irreducible
of degree d ≥ 7 and the order of the Galois group of F (x, 1) over Q is equal
to d.

In order to state the main results given in Theorems 1.2 and 1.3, we need
to introduce the notion of an enhanced automorphism group of a binary
form. For a 2 × 2 matrix M = ( s u

t v ), with complex entries, define the
binary form FM by

FM (x, y) = F (sx + uy, tx + vy).

Let Q denote the algebraic closure of the rationals (embedded) in C and
let K be a field containing Q. We say that a matrix M = ( s u

t v ) ∈ M2(K)
is a K-automorphism of F (resp., |F |) iff FM = F (resp., FM = ±F ). The
set of all K-automorphisms of F (resp., |F |) is denoted by AutK F (resp.,
AutK |F |). We define

(1.4) Aut′ |F | =
{

1√
|sv − tu|

(
s u
t v

)
: s, t, u, v ∈ Z

}
∩ AutQ |F |

and refer to it as the enhanced automorphism group of F . See [12, Lem-
ma 7.2] for a proof that Aut′ |F | contains at most 24 elements, provided
that d ≥ 3 and D(F ) ̸= 0.

For a nonzero polynomial P ∈ Z[x1, . . . , xn], we define the content of P
to be the greatest common divisor of its coefficients. Let

(1.5) f(d) = 20d − 41
80

(√
d2 + 16d

d
− 1

)
− 1

and notice that f(d) is a positive monotonously increasing function on the
interval [7, ∞), which approaches one as d tends to infinity (notice that
f(d) is negative for d ∈ {3, 4, 5, 6}). For an arbitrary finite set X, let #X
denote its cardinality. We prove the following.

Theorem 1.2. Let F ∈ Z[x, y] be an irreducible binary form of degree
d ≥ 7 and content one. Let α be a complex root of F (x, 1) and assume that
the field extension Q(α)/Q is Galois. Let λ be such that 0 ≤ λ < f(d),
where f(d) is defined in (1.5). Let p be prime, k a positive integer, and
consider the equation

(1.6) |F (x, y)| = hpk,

where x, y and h are integer variables, with h ≥ 1. There exists a positive
number C, which depends only on F and λ, and that is explicitly computable
when α /∈ R, with the following property. For all pk ≥ C, the number of
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solutions to (1.6) in integers (x, y, h) such that

gcd(x, y) = 1 and 1 ≤ h ≤ (pk)λ

is at most # Aut′ |F |. In particular, it does not exceed 24. More precisely,
for every two solutions (x1, y1, h1) and (x2, y2, h2) there exists a matrix

M = |sv − tu|−1/2 ·
(

s u
t v

)
in Aut′ |F | such that

x2
y2

= sx1 + uy1
tx1 + vy1

.

Theorem 1.3. Let F ∈ Z[x, y] be an irreducible binary form of degree
d ≥ 7 and content one. Let α be a complex root of F (x, 1) and assume that
the field extension Q(α)/Q is Galois. Let λ be such that

0 ≤ λ < 1 − 8.1/(d + 2).
Let p be prime and consider the equation
(1.7) |F (x, y)| = hpz,

where x, y, h and z are integer variables, with h, z ≥ 1. There exists a
positive number C, which depends only on F and λ, and that is explicitly
computable when α /∈ R, with the following property. For all p ≥ C, the
number of solutions to (1.7) in integers (x, y, z, h) such that

gcd(x, y) = 1, z ≥ 1 and 1 ≤ h ≤ (pz)λ

is at most

2# Aut′ |F | ·
⌊
1 + 11.51 + 1.5 log d + log ((d − 2.05)/(1 + λ))

log((d − 2.05)/(1 + λ) − 0.5d)

⌋
.

If we let λ(d) = 0.5 − 4.05/(d + 2), then the function

g(d) = 1 + 11.51 + 1.5 log d + log ((d − 2.05)/(1 + λ(d)))
log((d − 2.05)/(1 + λ(d)) − 0.5d)

is monotonously decreasing on the interval [7, ∞). Since g(7) ≈ 83.3, we can
use the upper bound # Aut′ |F | ≤ 24 as well as Theorem 1.3 to conclude
that the number of solutions (x, y, z, h) to (1.7) satisfying the aforemen-
tioned conditions does not exceed 48 · ⌊g(7)⌋ = 3984 when d ≥ 7. Further-
more, since g(1015) < 4 and limd→∞ g(d) = 3.5, we can also conclude that
it does not exceed 48 · ⌊g(1015)⌋ = 144 when d ≥ 1015.

The proof of Theorem 1.2 follows from the generalized non-Archimedean
gap principle, whose statement is given in Section 2, Lemma 2.3. The proof
of Theorem 1.3 follows from Lemma 2.5, which, in turn, is a consequence of
both the generalized non-Archimedean gap principle and the Thue–Siegel
principle, as formulated by Bombieri [1] and Bombieri and Mueller [2]. The
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condition that the field extension Q(α)/Q is Galois is necessary so to ensure
that all the conjugates of α lie in Q(α), as this enables us to invoke both
lemmas. The condition d ≥ 7 arises naturally in both of our arguments
and we emphasize its usage in our proofs. For example, in order to apply
each lemma, it is important to ensure that the inequality (d/2) + 1 < µ
is satisfied. In both of our arguments we have µ = (d − 2.05)/(1 + λ), so
(d/2) + 1 < µ if and only if λ < 1 − 8.1/(d + 2). Notice that this last
inequality can be solved for non-negative λ if and only if d ≥ 7.

Unfortunately, in the case when α is real, due to the application of Roth’s
Theorem [13] it is not yet possible to determine how large a prime power
pk in Theorem 1.2 or a prime p in Theorem 1.3 should be in order for the
respective absolute bound to hold. We expect that it is possible to overcome
this problem if one is able to generalize the non-Archimedean gap principle
even further and extend the range of µ from (d/2) + 1 < µ < d to, say,√

2d < µ < d, as it was done by Siegel [14] and Dyson [4] in the context of
(what was later called) the Thue–Siegel principle.

As a final remark, we point the reader’s attention to the fact that in
Theorems 1.2 and 1.3 we are considering only one large prime power pk

and one large prime p, respectively. Once again, this is because we would
like to apply Lemmas 2.3 and 2.5. To achieve this, a power of a prime p has
to be a large divisor of the right-hand side, and that is why we control the
magnitude of h by imposing the condition h ≤ (pk)λ for some fixed non-
negative λ. When λ is small, the quantity µ = (d − 2.05)/(1 + λ) exceeds
(d/2) + 1, thus enabling us to invoke each lemma. We expect that it would
be possible to establish similar absolute bounds for Diophantine equations
|F (x, y)| = hpz1

1 · · · pzℓ
ℓ , at least when ℓ is small relative to d, provided that

the non-Archimedean gap principle is generalized in a way that µ can take
values less than (d/2) + 1.

The article is structured as follows. In Section 2 we outline a number
of auxiliary results, which are used in later sections. We recommend the
reader to skip this section and use it as a reference when reading proofs of
Theorems 1.2 and 1.3, which are outlined in Sections 3 and 4, respectively.
We conclude the article with Section 5, where we demonstrate two applica-
tions of the aforementioned theorems in the cases when F = Φn, the n-th
cyclotomic binary form, and F = Ψn, the homogenization of the minimal
polynomial of 2 cos 2π

n .

2. Auxiliary Results
This section contains several definitions and results, which we utilize in

Sections 3 and 4. We recommend the reader to use it as a reference.
For an arbitrary polynomial P ∈ Z[x1, . . . , xn], let H(P ) denote the

maximum of Archimedean absolute values of its coefficients, and refer to



Number of Solutions of Diophantine Equations of Thue and Thue–Mahler Type 953

this quantity as the height of P . For a point (x1, . . . , xn) ∈ Zn, define

H(x1, . . . , xn) = max
i=1,2,...,n

{|xi|}

and refer to this quantity as the height of (x1, . . . , xn).
Let P ∈ C[x] be a polynomial that is not identically equal to zero, with

leading coefficient cP . The Mahler measure of P , denoted M(P ), is defined
to be M(P ) = |cP | if P (x) is the constant polynomial and

M(P ) = |cP |
d∏

i=1
max{1, |αi|}

otherwise, where α1, . . . , αd ∈ C are the roots of P . For a binary form
Q ∈ C[x, y], we define the Mahler measure of Q as M(Q) = M(Q(x, 1)).
The following lemma is a consequence of a well-known result of Lewis and
Mahler [9].

Lemma 2.1 (see [12, Lemma 2.6]). Let

F (x, y) = cdxd + cd−1xd−1y + · · · + c0yd

be a binary form of degree d ≥ 2 with integer coefficients such that c0cd ̸= 0.
Let x0, y0 be nonzero integers. There exists a root α of F (x, 1) such that

min
{∣∣∣∣α − x0

y0

∣∣∣∣ , ∣∣∣∣α−1 − y0
x0

∣∣∣∣} ≤ C|F (x0, y0)|
H(x0, y0)d

,

where

C = 2d−1d(d−1)/2M(F )d−2

|D(F )|1/2 .

Lemma 2.2 (Thunder, [18, Lemma 2]). Let p be a rational prime and
let Qp denote the algebraic closure of the field of p-adic numbers Qp. Let
F ∈ Z[x, y] be an irreducible homogeneous polynomial of degree d ≥ 2 and
content one, and denote the roots of F (x, 1) by α1, . . . , αd ∈ Qp. Let x and
y be coprime integers. If i0 is an index with

|x − αi0y|p
max{1, |αi0 |p}

= min
1≤i≤d

{
|x − αiy|p

max{1, |αi|p}

}
,

then
|x − αi0y|p

max{1, |αi0 |p}
≤ |F (x, y)|p

|D(F )|1/2
p

.

Further, if |F (x, y)|p < |D(F )|1/2
p , then the index i0 above is unique and

αi0 ∈ Qp.



954 Anton Mosunov

The following three results were established in [12]. Lemma 2.3 states the
generalized non-Archimedean gap principle, which plays a crucial role in the
proof of Theorem 1.2. In turn, Lemma 2.5 follows from the combination of
the generalized gap principle and the Thue–Siegel principle, as formulated
by Bombieri [1] and Bombieri and Mueller [2, Section II].

Lemma 2.3 (see [12, Theorem 1.2]). Let p be a rational prime. Let α ∈ Qp

be a p-adic algebraic number of degree d ≥ 3 over Q and let β be irrational
and in Q(α). Let µ be a real number such that (d/2) + 1 < µ < d and let
C0 be a positive real number. There exist positive real numbers C1 and C2,
that are explicitly computable in terms of α, β, µ and C0, with the following
property. If x1/y1 and x2/y2 are rational numbers in lowest terms such that
H(x2, y2) ≥ H(x1, y1) ≥ C1 and

|y1α − x1|p <
C0

H(x1, y1)µ
, |y2β − x2|p <

C0
H(x2, y2)µ

,

then at least one of the following holds:
• H(x2, y2) > C−1

2 H(x1, y1)µ−d/2;
• There exist integers s, t, u, v, with sv − tu ̸= 0, such that

β = sα + t

uα + v
and x2

y2
= sx1 + ty1

ux1 + vy1
.

Lemma 2.4 (see [12, Proposition 7.3]). Let F ∈ Z[x, y] be an irreducible
binary form of degree d ≥ 3 and let cd denote the coefficient of xd in F .
Let α1, . . . , αd be the roots of F (x, 1). There exists an index j ∈ {1, . . . , d}
such that

αj = vα1 − u

−tα1 + s

for some integers s, t, u and v if and only if the matrix

M = 1√
|sv − tu|

(
s u
t v

)

is in Aut′ |F |. Furthermore, if M ∈ Aut′ |F |, then |sv − tu| =
∣∣∣F (s,t)

cd

∣∣∣2/d
.

For an irrational number α, the orbit of α is the set

orb(α) =
{

vα − u

−tα + s
: s, t, u, v ∈ Z, sv − tu ̸= 0

}
.

Lemma 2.5 (see [12, Theorem 8.1]). Let K = R or Qp, where p is a
rational prime, and denote the standard absolute value on K by | · | (in
the case K = Qp, the absolute value is normalized so that |p| = p−1). Let
α1 ∈ K be an algebraic number of degree d ≥ 3 over Q and α2, α3, . . . , αn

be distinct elements of Q(α1), different from α1, each of degree d. Let
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µ be such that (d/2) + 1 < µ < d. Let C0 be a real number such that
C0 > (4eA)−1, where

(2.1) A = 5002
(

log max
i=1,...,n

{M(αi)} + d

2

)
.

There exists a positive real number C3, which is explicitly computable in
terms of α1, α2, . . . , αn, µ and C0, with the following property. The total
number of rationals x/y in lowest terms, which satisfy H(x, y) ≥ C3 and

(2.2)
∣∣∣∣αj − x

y

∣∣∣∣ <
C0

H(x, y)µ

for some j ∈ {1, 2, . . . , n} is less than

γ

⌊
1 + 11.51 + 1.5 log d + log µ

log(µ − d/2)

⌋
,

where

(2.3) γ = max{γ1, . . . , γn}, γi = #{j : αj ∈ orb(αi)}.

Notice that when degree d extension Q(α)/Q is Galois and α = α1, . . . , αd

are the algebraic conjugates of α, then for d ≥ 3 it follows from Lemma 2.4
that αj = (vα − u)/(−tα + s) if and only if M = |sv − tu|−1/2 · ( s u

t v )
is an element of Aut′ |F |. Thus, in this case, the quantity γ in (2.3) does
not exceed # Aut′ |F |. This fact plays an important role in the proof of
Theorem 1.3.

We conclude this section with the statement of a simple corollary to
Roth’s Theorem, which is used in the proofs of both Theorem 1.2 and
Theorem 1.3.

Theorem 2.6 (corollary to Roth’s Theorem [13]). Let α be an irrational
algebraic number in C and let ε be a positive real number. There exists a
positive number C, which depends only on α and ε, such that the inequality

min
{∣∣∣∣α − x

y

∣∣∣∣ , ∣∣∣∣α−1 − y

x

∣∣∣∣} >
1

H(x, y)2+ε

is satisfied for all coprime integer pairs (x, y) satisfying H(x, y) > C. Fur-
thermore, the number C is explicitly computable when α /∈ R.

3. Proof of Theorem 1.2
Theorem 2.6 implies that for every complex root α of F (x, 1) there exists

a positive number Cα, which depends only on α, such that for all coprime
integer pairs (x, y) with H(x, y) > Cα the inequality

min
{

|α − x

y
|,
∣∣∣∣α−1 − y

x

∣∣∣∣} > H(x, y)−2.05
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is satisfied. Furthermore, if α /∈ R and β is another complex root of F (x, 1),
then β /∈ R due to the fact that the field extension Q(α)/Q is Galois.
Consequently, the number Cα is explicitly computable in terms of α for
every root α of F (x, 1), as long as at least one of these roots is non-real.
Since

|F (x, y)| ≤ (d + 1)H(F )H(x, y)d

and |F (x, y)| = hpk, we have
hpk

(d + 1)H(F ) ≤ H(x, y)d.

Therefore, by choosing pk so that pk > Cd
α(d + 1)H(F ) for every com-

plex root α of F (x, 1), we can ensure that min
{
|α − x/y|,

∣∣α−1 − y/x
∣∣} >

H(x, y)−2.05 for every complex root α of F (x, 1).
Define

C0 = 2d−1d(d−1)/2M(F )d−2

|D(F )|1/2 .

Assume that there exists a solution (x, y, h) to (1.6). By Lemma 2.1,

min
{∣∣∣∣α − x

y

∣∣∣∣ , ∣∣∣∣α−1 − y

x

∣∣∣∣} ≤ C0hpk

H(x, y)d
.

From our choice of pk and the above inequality it follows that
1

H(x, y)2.05 < min
{∣∣∣∣α − x

y

∣∣∣∣ , ∣∣∣∣α−1 − y

x

∣∣∣∣} ≤ C0hpk

H(x, y)d
,

which is equivalent to
(3.1) H(x, y) < (C0hpk)1/(d−2.05).

Since h ≤ (pk)λ,

hpk ≤ (pk)1+λ ≤ |F (x, y)|−(1+λ)
p .

Combining this inequality with (3.1), we get

H(x, y)d−2.05 < C0hpk ≤ C0|F (x, y)|−(1+λ)
p .

We conclude that

(3.2) |F (x, y)|p <
C

1/(1+λ)
0

H(x, y)µ
,

where
µ = d − 2.05

1 + λ
.

Since we would like the conditions of Lemma 2.3 to be satisfied, we want to
ensure that the inequality (d/2) + 1 < µ holds. This inequality is satisfied
if and only if λ < 1 − 8.1/(d + 2). Here we can observe the importance of
the condition d ≥ 7, as the inequality λ < 1 − 8.1/(d + 2) cannot be solved
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for non-negative λ when d < 7. Since we chose λ < f(d) for f(d) defined
in (1.5), and since f(d) ≤ 1 − 8.1/(d + 2) for every d ≥ 7, we conclude that
the inequality (d/2) + 1 < µ holds.

Next, we take pk sufficiently large that

pk > |D(F )|.

Then

|F (x, y)|p ≤ p−k < |D(F )|−1 ≤ |D(F )|p.

By Lemma 2.2 there exists a unique p-adic root α ∈ Qp of F (x, 1) such
that

|yα − x|p
max{1, |α|p}

≤ |F (x, y)|p
|D(F )|1/2

p

.

Let cd denote the coefficient of xd in F . Since cdα is an algebraic integer,
we see that |cdα|p ≤ 1, so max{1, |α|p} ≤ |cd|−1

p . Combining this inequality
with (3.2), we obtain

|yα − x|p <
max{1, |α|p}

|D(F )|1/2
p

|F (x, y)|p

≤ C1
H(x, y)µ

,

where

C1 = C
1/(1+λ)
0 cd|D(F )|1/2.

Now, assume that there exist two solutions (x1, y1, h1) and (x2, y2, h2)
to (1.6), ordered so that H(x2, y2) ≥ H(x1, y1). Then it follows from the
discussion above that there exist p-adic roots α, β ∈ Qp of F (x, 1) such that

|y1α − x1|p <
C1

H(x1, y1)µ
, |y2β − x2|p <

C1
H(x2, y2)µ

.

Since (d/2)+1 < µ < d, it follows from Lemma 2.3 that there exist positive
numbers C2 and C3, each of which is explicitly computable in terms of C1,
µ and F , such that if H(x2, y2) ≥ H(x1, y1) ≥ C2, then either H(x2, y2) >

C3H(x1, y1)µ−d/2, or α, β and x1/y1, x2/y2 are connected by means of a
linear fractional transformation, or both. By choosing pk sufficiently large
we can always ensure that H(x1, y1) ≥ C2. We obtain an upper bound on
H(x2, y2) by combining the inequality |F (x1, y1)| ≤ (d + 1)H(F )H(x1, y1)d
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with (3.1):

H(x2, y2) < (C0h2pk)1/(d−2.05)

≤
(
C0(pk)1+λ

)1/(d−2.05)

≤
(
C0(h1pk)1+λ

)1/(d−2.05)

=
(
C0|F (x1, y1)|1+λ

)1/(d−2.05)

≤
(

C0
(
(d + 1)H(F )H(x1, y1)d

)1+λ
)1/(d−2.05)

.

Merging the above upper bound with the lower bound H(x2, y2) >

C3H(x1, y1)µ−d/2 results in the inequality

C3H(x1, y1)µ−d/2−d(1+λ)/(d−2.05) <
(
C0 ((d + 1)H(F ))1+λ

)1/(d−2.05)
,

where µ = (d − 2.05)/(1 + λ). Our goal is to ensure that the exponent of
H(x1, y1) on the left-hand side is positive, i.e.,

d − 2.05
1 + λ

− d

2 − d(1 + λ)
d − 2.05 > 0.

Notice that this inequality cannot be solved for non-negative λ when d < 7.
It does, however, admit a solution for d ≥ 7, and in fact the above inequality
is always satisfied due to our choice of λ (recall that 0 ≤ λ < f(d), where
the function f(d) is defined in (1.5)). Since the exponent of H(x1, y1) is
positive, we conclude that H(x1, y1) is bounded. Thus, by making pk (and
therefore H(x1, y1)) sufficiently large we can always ensure that the inequal-
ity H(x2, y2) > C3H(x1, y1)µ−d/2 does not hold. Then α, β and x1/y1, x2/y2
are connected by means of a linear fractional transformation:

β = vα − u

−tα + s
and x2

y2
= vx1 − uy1

−tx1 + sy1
,

where s, t, u, v ∈ Z and sv − tu ̸= 0. By Lemma 2.4, the matrix

M = 1√
|sv − tu|

(
s u
t v

)
is an element of Aut′ |F |. Hence the number of solutions (x, y, h) to (1.6) is
at most # Aut′ |F |.

4. Proof of Theorem 1.3
The beginning of the proof is similar to the proof of Theorem 1.2. Theo-

rem 2.6 implies that for every complex root α of F (x, 1) there exists a posi-
tive number Cα, which depends only on α, such that for all coprime integer
pairs (x, y) with H(x, y) > Cα the inequality min{|α−x/y|, |α−1 −y/x|} >
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H(x, y)−2.05 is satisfied. Furthermore, if α /∈ R and β is another complex
root of F (x, 1), then β /∈ R due to the fact that the field extension Q(α)/Q
is Galois. Consequently, the number Cα is explicitly computable in terms
of α for every root α of F (x, 1), as long as at least one of these roots is
non-real. Since

|F (x, y)| ≤ (d + 1)H(F )H(x, y)d

and |F (x, y)| = hpz, we have

p

(d + 1)H(F ) ≤ hpz

(d + 1)H(F ) = |F (x, y)|
(d + 1)H(F ) ≤ H(x, y)d.

Therefore, by choosing p so that p > Cd
α(d + 1)H(F ) for every com-

plex root α of F (x, 1), we can ensure that min
{
|α − x/y|,

∣∣α−1 − y/x
∣∣} >

H(x, y)−2.05 for every complex root α of F (x, 1).
Now, assume that there exists a solution (x, y, z, h) of (1.7). As in the

proof of Theorem 1.2, for our choice of p the inequality

(4.1) H(x, y) < (C0hpz)1/(d−2.05)

holds, where

C0 = 2d−1d(d−1)/2M(F )d−2

|D(F )|1/2 .

Since
hpz ≤ (pz)1+λ ≤ |F (x, y)|−(1+λ)

p ,

it follows from (4.1) that

|F (x, y)|p <
C

1/(1+λ)
0

H(x, y)µ
,

where
µ = d − 2.05

1 + λ
.

Since we would like the conditions of Lemma 2.5 to be satisfied, we want to
ensure that the inequality (d/2) + 1 < µ holds. This inequality is satisfied
if and only if λ < 1 − 8.1/(d + 2), which motivated our choice of λ in the
first place. Here we can also observe the importance of the condition d ≥ 7,
as the inequality λ < 1 − 8.1/(d + 2) cannot be solved for non-negative λ
when d < 7.

We take p sufficiently large that

p > |D(F )|.

Then
|F (x, y)|p ≤ p−1 < |D(F )|−1 ≤ |D(F )|p.
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Let cd denote the coefficient of xd in F . By Lemma 2.2 there exists a unique
p-adic root α ∈ Qp of F (x, 1) such that

|yα − x|p ≤ max{1, |α|p}
|D(F )|1/2

p

|F (x, y)|p <
C1

H(x, y)µ
,

where
C1 = C

1/(1+λ)
0 cd|D(F )|1/2.

Note that C1 is independent of p. Further, we can ensure that p ∤ y by
adjusting our choice of p as follows:

p > cd.

Indeed, if p | y, then p does not divide x, because x and y are coprime.
Since z ≥ 1, it is evident from equation

cdxd + y(cd−1xd−1 + · · · + c0yd−1) = ±hpz

that p divides cd, in contradiction to our choice of p. Then |y|p = 1, and so
for every α ∈ Qp we have ∣∣∣∣α − x

y

∣∣∣∣
p

= |yα − x|p.

Therefore ∣∣∣∣α − x

y

∣∣∣∣
p

<
C1

H(x, y)µ
.

Let α1, α2, . . . , αd be the roots of F (x, 1). Since (d/2) + 1 < µ < d, we
apply Lemma 2.5 and conclude that there exists a positive number C2,
which is explicitly computable in terms of C1, µ, α1, α2, . . . , αd, such that
the number of coprime integer pairs (x, y) satisfying H(x, y) ≥ C2 and

(4.2)
∣∣∣∣αj − x

y

∣∣∣∣
p

<
C1

H(x, y)µ

for some j ∈ {1, 2, . . . , d} is less than

2# Aut′ |F | ·
⌊
1 + 11.51 + 1.5 log d + log µ

log(µ − 0.5d)

⌋
.

If we choose p so that p ≥ (d + 1)H(F )Cd
2 , then

Cd
2 ≤ p

(d + 1)H(F ) ≤ hpz

(d + 1)H(F ) = |F (x, y)|
(d + 1)H(F ) ≤ H(x, y)d,

so the inequality H(x, y) ≥ C2 is satisfied. Since all solutions (x, y, z, h)
to (1.7), including those that satisfy H(x, y) ≥ C2, also satisfy (4.2), the
result follows.
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5. Applications
In this section we demonstrate two applications of Theorems 1.2 and 1.3.

For an integer n > 1, let ζn denote the primitive n-th root of unity, and let

Φn(x, y) =
∏

1≤k<n
gcd(k,n)=1

(
x − ζk

ny
)

be the n-th cyclotomic binary form. Then Φn has degree d = φ(n), where
φ(n) is the Euler’s totient function. Further, the Galois group of Φn(x, 1)
has order d. Let

D2 =
〈(

0 1
1 0

)
,

(
−1 0
0 −1

)〉
and D4 =

〈(
0 1
1 0

)
,

(
0 1

−1 0

)〉
.

Before we state our results, let us first compute the enhanced automorphism
group of Φn.

Lemma 5.1. Let n be a positive integer and assume that d ≥ 6, where
d = φ(n). Then

Aut′ |Φn| =
{
D4 if 4 | n,
D2 otherwise.

Proof. It was proved by Fouvry and Waldschmidt [8] that

Aut Φn =
{
D4 if 4 | n,
D2 otherwise.

We will prove that Aut′ |Φn| = Aut Φn. Let M = |sv − tu|−1/2 · ( s u
t v ) be

an element of Aut′ |Φn|. Since d ≥ 6, it follows from Lemma 2.4 that there
exists a positive integer j coprime to n, with 1 ≤ j < n, such that

ζj
n = vζn − u

−tζn + s

for some s, t, u, v ∈ Z such that sv − tu ̸= 0. At this point we consider three
cases.

(1) Suppose that n is odd. Then there exists a field automorphism σ2 in
the Galois group of Q(ζn) such that σ2(ζℓ

n) = ζ2ℓ
n for each ℓ coprime

to n. Therefore,

ζ2j
n = σ2(ζj

n) = σ2

(
vζn − u

−tζn + s

)
= vσ2(ζn) − u

−tσ2(ζn) + s
= vζ2

n − u

−tζ2
n + s

,

which implies(
vζn − u

−tζn + s

)2
= ζ2j

n = vζ2
n − u

−tζ2
n + s

.
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We conclude that ζn is a root of the polynomial
f(x) = (vx − u)2(−tx2 + s) − (−tx + s)2(vx2 − u)

= (−tv2 − t2v)x4 + (2tu + 2st)x3 + (sv2 − s2v − tu2 + t2u)x2

+ (−2suv − 2stu)x + (su2 + s2u),
whose degree is at most 4. Since d > 4, it must be the case that f(x)
is identically equal to zero. Equating each of the coefficients of f(x)
to zero, we obtain a system of five equations in four unknowns.
The only solutions to this system are t = u = 0, v = s, s ̸=
0 and s = v = 0, u = t, t ̸= 0. These solutions correspond to
matrices 1

|s| ( s 0
0 s ) = ± ( 1 0

0 1 ) and 1
|t| ( 0 t

t 0 ) = ± ( 0 1
1 0 ), respectively,

which constitute D2. Hence Aut′ |Φn| = D2.
(2) Suppose that n ≡ 2 (mod 4). Then Φn(x, y) = Φn/2(x, −y), meaning

that Φn = (Φn/2)S for S =
( 1 0

0 −1
)
. By the argument similar to [11,

Lemma 3.3], we find that
Aut′ |Φn| = S−1(Aut′ |Φn/2|)S = S−1D2S = D2.

(3) Suppose that 4 | n, and assume for a contradiction that Aut′ |Φn| ≠
D4. Then it follows from [12, Lemma 7.2] that Aut′ |Φn| is a dihedral
group of order 16 that properly contains D4. In particular, there
must exist a matrix M = |sv − tu|−1/2 · ( s u

t v ) in Aut′ |Φn| such that
M2 =

( 0 1
−1 0

)
. Solving this system of four equations for s, t, u and

v, we find that M = ± 1√
2
( 1 1

−1 1
)
. Since (Φn)M = ±Φn,

Φn(x + y, −x + y) = 2
φ(n)

2 Φn(x, y)
for all x and y. Setting x = 0 and y = 1, we find that

Φn(1) = Φn(1, 1) = 2
φ(n)

2 Φn(0, 1) = 2
φ(n)

2 .

However, it is well-known that Φn(1) = p if n = pk is a prime
power with k ≥ 1 and Φn(1) = 1 otherwise. Since Φn(1) is even,
we conclude that n = 2k. But then 2 = Φn(1) = 2

φ(n)
2 , meaning

that φ(n) = 2. Since d ≥ 6 and d = φ(n), we reach a contradiction.
Hence Aut′ |Φn| = D4.

□

It follows from Lemma 5.1 that

# Aut′ |Φn| =
{

8 if 4 | n,
4 otherwise.

Combining this fact with Theorems 1.2 and 1.3 yields the following two
results. Notice that in both cases the positive number C is explicitly com-
putable in terms of Φn and a suitably chosen parameter λ.



Number of Solutions of Diophantine Equations of Thue and Thue–Mahler Type 963

Corollary 5.2. Let n be a positive integer and assume that d ≥ 8, where
d = φ(n). Let λ be such that 0 ≤ λ < f(d), where f(d) is defined in (1.5).
Let p be prime, k a positive integer, and consider the equation
(5.1) Φn(x, y) = hpk,

where x, y and h are integer variables, with h ≥ 1. There exists a positive
number C, which is explicitly computable in terms of Φn and λ, such that
for all pk > C the equation (5.1) has either no solutions in integers (x, y, h)
such that

gcd(x, y) = 1 and 1 ≤ h ≤ (pk)λ,

or exactly eight solutions when 4 | n, namely (x, y, h), (−x, −y, h), (y, x, h),
(−y, −x, h), (−x, y, h), (x, −y, h), (−y, x, h) and (y, −x, h), or exactly four
solutions otherwise, namely (x, y, h), (−x, −y, h), (y, x, h) and (−y, −x, h).

Corollary 5.3. Let n be a positive integer and assume that d ≥ 8, where
d = φ(n). Let λ be such that

0 ≤ λ < 1 − 8.1/(d + 2).
Let p be prime and consider the equation
(5.2) Φn(x, y) = hpz,

where x, y, h and z are integer variables, with h, z ≥ 1. There exists a
positive number C, which is explicitly computable in terms of Φn and λ, such
that for all p > C the number of solutions to (5.2) in integers (x, y, z, h)
such that

gcd(x, y) = 1, z ≥ 1 and 1 ≤ h ≤ (pz)λ

is at most

2an

⌊
1 + 11.51 + 1.5 log d + log ((d − 2.05)/(1 + λ))

log((d − 2.05)/(1 + λ) − 0.5d)

⌋
.

Here an = 8 when 4 | n and an = 4 otherwise.

If we let d = φ(n) and λ(d) = 0.5−4.05/(d+2), then it is a consequence
of Corollary 5.3 that the number of solutions in integers (x, y, z, h) to (5.2)
does not exceed 1328 for all d ≥ 7 and it does not exceed 48 for all d ≥ 1015.

For the next application of our results, let n ≥ 3 be an integer, and let

Ψn(x, y) =
∏

1≤k< n
2

gcd(k,n)=1

(
x − 2 cos

(2πk

n

)
y

)

denote the homogenization of the minimal polynomial of ζn + ζ−1
n =

2 cos
(2π

n

)
. Then Ψn has degree d = φ(n)/2. Further, the Galois group of

Ψn(x, 1) has order d [11, Lemma 3.1]. Before we state our results, let us
first compute the enhanced automorphism group of Ψn.
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Lemma 5.4. Let n be a positive integer and assume that d ≥ 5, where
d = φ(n)/2. Then

Aut′ |Ψn| =
{(

1 0
0 1

)
,

(
−1 0
0 −1

)}
.

Proof. Let M = |sv−tu|−1/2 ·( s u
t v ) be an element of Aut′ |Ψn|. Since d ≥ 5,

it follows from Lemma 2.4 that there exists a positive integer j coprime to
n, with 1 ≤ j < n/2, such that

2 cos
(2πj

n

)
=

2 cos
(

2π
n

)
v − u

−2 cos
(

2π
n

)
t + s

.

By [11, Lemma 3.5], it must be the case that t = u = 0, s = v and s ̸= 0.
Thus, M = |sv − tu|−1/2 · ( s u

t v ) = ± ( 1 0
0 1 ), and so the result follows. □

It follows from Lemma 5.4 that # Aut′ |Ψn| = 2 for every integer n such
that φ(n) ≥ 10. Combining this fact with Theorems 1.2 and 1.3 yields the
following two results. Unlike in Corollaries 5.2 and 5.3, in both cases the
number C is not explicitly computable due to the application of Roth’s
Theorem.

Corollary 5.5. Let n be a positive integer and assume that d ≥ 7, where
d = φ(n)/2. Let λ be such that 0 ≤ λ < f(d), where f(d) is defined in (1.5).
Let p be prime, k a positive integer, and consider the equation

(5.3) |Ψn(x, y)| = hpk,

where x, y and h are integer variables, with h ≥ 1. There exists a positive
number C, which depends only on F and λ, such that for all pk > C the
equation (5.3) has either no solutions in integers (x, y, h) such that

gcd(x, y) = 1 and 1 ≤ h ≤ (pk)λ,

or exactly two solutions, namely (x, y, h) and (−x, −y, h).

Corollary 5.6. Let n be a positive integer and assume that d ≥ 7, where
d = φ(n)/2. Let λ be such that

0 ≤ λ < 1 − 8.1/(d + 2).
Let p be prime and consider the equation
(5.4) |Ψn(x, y)| = hpz,

where x, y, h and z are integer variables, with h, z ≥ 1. There exists a
positive number C, which depends only on F and λ, such that for all p > C
the number of solutions to (5.4) in integers (x, y, z, h) such that

gcd(x, y) = 1, z ≥ 1 and 1 ≤ h ≤ (pz)λ
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is at most

4
⌊
1 + 11.51 + 1.5 log d + log ((d − 2.05)/(1 + λ))

log((d − 2.05)/(1 + λ) − 0.5d)

⌋
.

If we let d = φ(n)/2 and λ(d) = 0.5−4.05/(d+2), then it is a consequence
of Corollary 5.6 that the number of solutions in integers (x, y, z, h) to (5.4)
does not exceed 332 for all d ≥ 7 and it does not exceed 12 for all d ≥ 1015.
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