[Un problème de Plateau non paramétrique avec condition au bord partiellement libre]
We consider a Plateau problem in codimension in the non-parametric setting, where a Dirichlet boundary datum is assigned only on part of the boundary of a bounded convex domain . Where the Dirichlet datum is not prescribed, we allow a free contact with the horizontal plane. We show existence of a solution, and prove regularity for the corresponding area-minimizing surface. We compare these solutions with the classical minimal surfaces of Meeks and Yau, and show that they are equivalent when the Dirichlet boundary datum is assigned on at most disjoint arcs of .
Nous considérons un problème de Plateau en codimension dans un cadre non paramétrique, où une donnée de Dirichlet n’est assignée que sur une partie de la frontière d’un domaine convexe borné . Là où la donnée de Dirichlet n’est pas prescrite, nous autorisons un contact libre avec le plan horizontal. Nous montrons l’existence d’une solution, et prouvons la régularité de la surface minimale correspondante. Nous comparons ces solutions avec les surfaces minimales classiques de Meeks et Yau, et montrons qu’elles sont équivalentes lorsque la donnée de Dirichlet est assignée sur au plus arcs disjoints de .
Accepté le :
Publié le :
DOI : 10.5802/jep.273
Keywords: Plateau problem, area functional, minimal surfaces, relaxation, Cartesian currents
Mots-clés : Problème de Plateau, fonctionnelle d’aire, surfaces minimales, relaxation, courants cartésiens
Bellettini, Giovanni  1 ; Marziani, Roberta  2 ; Scala, Riccardo  2
CC-BY 4.0
@article{JEP_2024__11__1035_0,
author = {Bellettini, Giovanni and Marziani, Roberta and Scala, Riccardo},
title = {A non-parametric {Plateau} problem with~partial free boundary},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1035--1098},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.273},
mrnumber = {4812041},
zbl = {07928811},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.273/}
}
TY - JOUR AU - Bellettini, Giovanni AU - Marziani, Roberta AU - Scala, Riccardo TI - A non-parametric Plateau problem with partial free boundary JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1035 EP - 1098 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.273/ DO - 10.5802/jep.273 LA - en ID - JEP_2024__11__1035_0 ER -
%0 Journal Article %A Bellettini, Giovanni %A Marziani, Roberta %A Scala, Riccardo %T A non-parametric Plateau problem with partial free boundary %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1035-1098 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.273/ %R 10.5802/jep.273 %G en %F JEP_2024__11__1035_0
Bellettini, Giovanni; Marziani, Roberta; Scala, Riccardo. A non-parametric Plateau problem with partial free boundary. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1035-1098. doi: 10.5802/jep.273
[1] New lower semicontinuity results for polyconvex integrals, Calc. Var. Partial Differential Equations, Volume 2 (1994) no. 3, pp. 329-371 | DOI | Zbl | MR
[2] Theory of varifolds (1965) (mimeographed notes)
[3] Plateau’s problem. An invitation to varifold geometry., Stud. Math. Libr., 13, American Mathematical Society, Providence, RI, 2001 | MR
[4] Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI | MR
[5] Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4), Volume 135 (1983), pp. 293-318 | DOI | Zbl | MR
[6] Every closed convex set is the set of minimizers of some -smooth convex function, Proc. Amer. Math. Soc., Volume 130 (2002) no. 12, pp. 3687-3692 | DOI | Zbl | MR
[7] On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions, Ann. Mat. Pura Appl. (4), Volume 199 (2020) no. 2, pp. 445-477 | DOI | Zbl | MR
[8] The -relaxed area of the graph of the vortex map (2021) | arXiv
[9] The -relaxed area of the graph of the vortex map: optimal upper bound (in preparation)
[10] Relaxation of the area of the vortex map: a non-parametric Plateau problem for a catenoid containing a segment (in preparation)
[11] The -relaxed area of the graph of the vortex map: optimal lower bound (in preparation)
[12] On the area of the graph of a singular map from the plane to the plane taking three values, Adv. Calc. Var., Volume 3 (2010) no. 4, pp. 371-386 | DOI | Zbl | MR
[13] Triple covers and a non-simply connected surface spanning an elongated tetrahedron and beating the cone, Interfaces Free Bound., Volume 20 (2018) no. 3, pp. 407-436 | DOI | Zbl | MR
[14] Covers, soap films and BV functions, Geom. Flows, Volume 3 (2018) no. 1, pp. 57-75 | Zbl | DOI | MR
[15] -relaxed area of graphs of -valued Sobolev maps and its countably subadditive envelope, Rev. Mat. Iberoamericana (to appear)
[16] A variational analysis of nematic axisymmetric films: the covariant derivative case, 2024 | arXiv
[17] Soap films and covering spaces, J. Geom. Anal., Volume 5 (1995) no. 4, pp. 445-514 | Zbl | DOI | MR
[18] Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progr. in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR
[19] On the singular planar Plateau problem, 2024 | arXiv
[20] The perimeter inequality under Steiner symmetrization: cases of equality, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 525-555 | DOI | Zbl | MR
[21] Plateau’s problem for singular curves, Comm. Anal. Geom., Volume 30 (2022) no. 8, pp. 1779-1792 | DOI | Zbl | MR
[22] Minimal surfaces, Grundlehren Math. Wissen., 339, Springer, Heidelberg, 2010 | DOI | MR
[23] Solution of the problem of Plateau, Trans. Amer. Math. Soc., Volume 33 (1931) no. 1, pp. 263-321 | Zbl | DOI | MR
[24] Geometric measure theory, Grundlehren Math. Wissen., 153, Springer-Verlag New York, Inc., New York, 1969 | MR
[25] Normal and integral currents, Ann. of Math. (2), Volume 72 (1960), pp. 458-520 | DOI | MR
[26] Cartesian currents in the calculus of variations. I. Cartesian currents, Ergeb. Math. Grenzgeb. (3), 37, Springer-Verlag, Berlin, 1998 | MR
[27] Cartesian currents in the calculus of variations. II. Variational integrals, Ergeb. Math. Grenzgeb. (3), 38, Springer-Verlag, Berlin, 1998 | DOI | MR
[28] Minimal surfaces and functions of bounded variation, Monographs in Math., 80, Birkhäuser Verlag, Basel, 1984 | DOI | MR
[29] Minimization of non-coercive integrals by means of convex rearrangement, Adv. Calc. Var., Volume 5 (2012) no. 2, pp. 231-249 | Zbl | DOI | MR
[30] Plateau’s problem, Open problems in mathematics, Springer, Cham, 2016, pp. 273-302 | DOI | Zbl
[31] Conformal mappings and the Plateau-Douglas problem in Riemannian manifolds, J. reine angew. Math., Volume 359 (1985), pp. 37-54 | Zbl | DOI | MR
[32] Geometric integration theory, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2008 | DOI | MR
[33] Area minimizing discs in metric spaces, Arch. Rational Mech. Anal., Volume 223 (2017) no. 3, pp. 1123-1182 | Zbl | DOI | MR
[34] The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology, Volume 21 (1982) no. 4, pp. 409-442 | DOI | MR
[35] Lectures on minimal surfaces. Vol. 1, Cambridge University Press, Cambridge, 1989 | MR
[36] On Plateau’s problem, Ann. of Math. (2), Volume 31 (1930) no. 3, pp. 457-469 | DOI
[37] Some remarks on the problem of Plateau, Proc. Nat. Acad. Sci. U.S.A., Volume 16 (1930), pp. 242-248 | DOI | Zbl
[38] Solution of the Plateau problem for -dimensional surfaces of varying topological type, Acta Math., Volume 104 (1960), pp. 1-92 | DOI | MR
[39] Optimal estimates for the triple junction function and other surprising aspects of the area functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Volume 20 (2020) no. 2, pp. 491-564 | Zbl | MR
[40] On the -relaxed area of graphs of BV piecewise constant maps taking three values, Adv. Calc. Var. (to appear)
[41] Hausdorff distance and convex sets, J. Convex Anal., Volume 14 (2007) no. 1, pp. 109-117 | Zbl | MR
Cité par Sources :





