Finitely generated subgroups of algebraic elements of plane Cremona groups are bounded
[Les sous-groupes de type fini d’éléments algébriques du groupe de Cremona planaire sont bornés]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1011-1028

We prove that any finitely generated subgroup of the plane Cremona group consisting only of algebraic elements is of bounded degree. This follows from a more general result on ‘decent’ actions on infinite restricted products. We apply our results to describe the degree growth of finitely generated subgroups of the plane Cremona group.

Nous montrons que tout sous-groupe de type fini du groupe de Cremona planaire contenant seulement des éléments algébriques est de degré borné. Cela découle d’un résultat plus général sur les actions « décentes » sur les produits infinis restreints. Nous appliquons nos résultats pour décrire la croissance des degrés des sous-groupes de type fini du groupe de Cremona planaire.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.271
Classification : 14E07, 20F65, 37F10
Keywords: Cremona group, algebraic elements, locally elliptic actions, degree growth
Mots-clés : Groupe de Cremona, éléments algébriques, actions purement elliptiques, croissance des degrés

Lonjou, Anne  1   ; Przytycki, Piotr  2   ; Urech, Christian  3

1 Department of Mathematics, University of the Basque Country UPV/EHU, Sarriena s/n, 48940 Leioa, Bizkaia, Spain & IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
2 Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
3 Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1011_0,
     author = {Lonjou, Anne and Przytycki, Piotr and Urech, Christian},
     title = {Finitely generated subgroups of algebraic~elements of plane {Cremona} groups are~bounded},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1011--1028},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.271},
     mrnumber = {4801142},
     zbl = {07928809},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.271/}
}
TY  - JOUR
AU  - Lonjou, Anne
AU  - Przytycki, Piotr
AU  - Urech, Christian
TI  - Finitely generated subgroups of algebraic elements of plane Cremona groups are bounded
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1011
EP  - 1028
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.271/
DO  - 10.5802/jep.271
LA  - en
ID  - JEP_2024__11__1011_0
ER  - 
%0 Journal Article
%A Lonjou, Anne
%A Przytycki, Piotr
%A Urech, Christian
%T Finitely generated subgroups of algebraic elements of plane Cremona groups are bounded
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1011-1028
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.271/
%R 10.5802/jep.271
%G en
%F JEP_2024__11__1011_0
Lonjou, Anne; Przytycki, Piotr; Urech, Christian. Finitely generated subgroups of algebraic elements of plane Cremona groups are bounded. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1011-1028. doi: 10.5802/jep.271

[BC16] Blanc, Jérémy; Cantat, Serge Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc., Volume 29 (2016) no. 2, pp. 415-471 | DOI | Zbl | MR

[BF13] Blanc, Jérémy; Furter, Jean-Philippe Topologies and structures of the Cremona groups, Ann. of Math. (2), Volume 178 (2013) no. 3, pp. 1173-1198 | DOI | Zbl | MR

[BF21] Breuillard, Emmanuel; Fujiwara, Koji On the joint spectral radius for isometries of non-positively curved spaces and uniform growth, Ann. Inst. Fourier (Grenoble), Volume 71 (2021) no. 1, pp. 317-391 | DOI | Numdam | Zbl | MR

[Can11] Cantat, Serge Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2), Volume 174 (2011) no. 1, pp. 299-340 | DOI | Zbl | MR

[Can18] Cantat, Serge The Cremona group, Algebraic geometry (Salt Lake City, 2015) (Proc. Sympos. Pure Math.), Volume 97.1, American Mathematical Society, Providence, RI, 2018, pp. 101-142 | DOI | Zbl

[CD12] Cantat, Serge; Dolgachev, Igor Rational surfaces with a large group of automorphisms, J. Amer. Math. Soc., Volume 25 (2012) no. 3, pp. 863-905 | DOI | Zbl | MR

[Dan20] Dang, Nguyen-Bac Degrees of iterates of rational maps on normal projective varieties, Proc. London Math. Soc. (3), Volume 121 (2020) no. 5, pp. 1268-1310 | DOI | Zbl | MR

[DK18] Druţu, Cornelia; Kapovich, Michael Geometric group theory, Amer. Math. Soc. Colloquium Publ., 63, American Mathematical Society, Providence, RI, 2018 | DOI | MR

[Fav10] Favre, Charles Le groupe de Cremona et ses sous-groupes de type fini, Séminaire Bourbaki. Volume 2008/2009 (Astérisque), Volume 332, Société Mathématique de France, Paris, 2010, pp. 11-43 (Exp. No. 998) | Numdam | Zbl | MR

[Giz80] Gizatullin, Marat Kharisovitch Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat., Volume 44 (1980) no. 1, pp. 110-144 | Zbl | MR

[GLU24] Genevois, Anthony; Lonjou, Anne; Urech, Christian Cremona groups over finite fields, Neretin groups, and non-positively curved cube complexes, Internat. Math. Res. Notices (2024) no. 1, pp. 554-596 | DOI | Zbl | MR

[Gri16] Grivaux, Julien Parabolic automorphisms of projective surfaces (after M. H. Gizatullin), Moscow Math. J., Volume 16 (2016) no. 2, pp. 275-298 | DOI | Zbl | MR

[HO21] Haettel, Thomas; Osajda, Damian Locally elliptic actions, torsion groups, and nonpositively curved spaces, 2021 | arXiv

[Jun09] Jungers, Raphaël The joint spectral radius: theory and applications, Lect. Notes in Control and Information Sci., 385, Springer, Berlin, Heidelberg, 2009 | DOI | MR

[Kar24] Karpinski, Chris Decency of group actions on restricted products (2024) (in preparation)

[Lam24] Lamy, Stéphane The Cremona group (2024) (in preparation, available at https://www.math.univ-toulouse.fr/~slamy/blog/cremona.html)

[LU21] Lonjou, Anne; Urech, Christian Actions of Cremona groups on CAT(0) cube complexes, Duke Math. J., Volume 170 (2021) no. 17, pp. 3703-3743 | Zbl | MR

[NOP22] Norin, Sergey; Osajda, Damian; Przytycki, Piotr Torsion groups do not act on 2-dimensional CAT(0) complexes, Duke Math. J., Volume 171 (2022) no. 6, pp. 1379-1415 | Zbl | MR

[RS60] Rota, Gian-Carlo; Strang, Gilbert A note on the joint spectral radius, Indag. Math., Volume 22 (1960) no. 4, pp. 379-381 | DOI | Zbl | MR

[Sch22] Schneider, Julia Relations in the Cremona group over a perfect field, Ann. Inst. Fourier (Grenoble), Volume 72 (2022) no. 1, pp. 1-42 | DOI | Numdam | Zbl | MR

[Ser80] Serre, Jean-Pierre Trees, Springer-Verlag, Berlin-New York, 1980 | DOI | MR

[Ser10] Serre, Jean-Pierre Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki. Volume 2008/2009 (Astérisque), Volume 332, Société Mathématique de France, Paris, 2010, pp. 75-100 (Exp. No. 1000) | Numdam | Zbl | MR

[Ure17] Urech, Christian Subgroups of Cremona groups, Ph. D. Thesis, University of Basel (2017)

[Ure18] Urech, Christian Remarks on the degree growth of birational transformations, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 291-308 | DOI | Zbl | MR

Cité par Sources :