[Les sous-groupes de type fini d’éléments algébriques du groupe de Cremona planaire sont bornés]
We prove that any finitely generated subgroup of the plane Cremona group consisting only of algebraic elements is of bounded degree. This follows from a more general result on ‘decent’ actions on infinite restricted products. We apply our results to describe the degree growth of finitely generated subgroups of the plane Cremona group.
Nous montrons que tout sous-groupe de type fini du groupe de Cremona planaire contenant seulement des éléments algébriques est de degré borné. Cela découle d’un résultat plus général sur les actions « décentes » sur les produits infinis restreints. Nous appliquons nos résultats pour décrire la croissance des degrés des sous-groupes de type fini du groupe de Cremona planaire.
Accepté le :
Publié le :
DOI : 10.5802/jep.271
Keywords: Cremona group, algebraic elements, locally elliptic actions, degree growth
Mots-clés : Groupe de Cremona, éléments algébriques, actions purement elliptiques, croissance des degrés
Lonjou, Anne  1 ; Przytycki, Piotr  2 ; Urech, Christian  3
CC-BY 4.0
@article{JEP_2024__11__1011_0,
author = {Lonjou, Anne and Przytycki, Piotr and Urech, Christian},
title = {Finitely generated subgroups of algebraic~elements of plane {Cremona} groups are~bounded},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {1011--1028},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.271},
mrnumber = {4801142},
zbl = {07928809},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.271/}
}
TY - JOUR AU - Lonjou, Anne AU - Przytycki, Piotr AU - Urech, Christian TI - Finitely generated subgroups of algebraic elements of plane Cremona groups are bounded JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1011 EP - 1028 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.271/ DO - 10.5802/jep.271 LA - en ID - JEP_2024__11__1011_0 ER -
%0 Journal Article %A Lonjou, Anne %A Przytycki, Piotr %A Urech, Christian %T Finitely generated subgroups of algebraic elements of plane Cremona groups are bounded %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1011-1028 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.271/ %R 10.5802/jep.271 %G en %F JEP_2024__11__1011_0
Lonjou, Anne; Przytycki, Piotr; Urech, Christian. Finitely generated subgroups of algebraic elements of plane Cremona groups are bounded. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1011-1028. doi: 10.5802/jep.271
[BC16] Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc., Volume 29 (2016) no. 2, pp. 415-471 | DOI | Zbl | MR
[BF13] Topologies and structures of the Cremona groups, Ann. of Math. (2), Volume 178 (2013) no. 3, pp. 1173-1198 | DOI | Zbl | MR
[BF21] On the joint spectral radius for isometries of non-positively curved spaces and uniform growth, Ann. Inst. Fourier (Grenoble), Volume 71 (2021) no. 1, pp. 317-391 | DOI | Numdam | Zbl | MR
[Can11] Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2), Volume 174 (2011) no. 1, pp. 299-340 | DOI | Zbl | MR
[Can18] The Cremona group, Algebraic geometry (Salt Lake City, 2015) (Proc. Sympos. Pure Math.), Volume 97.1, American Mathematical Society, Providence, RI, 2018, pp. 101-142 | DOI | Zbl
[CD12] Rational surfaces with a large group of automorphisms, J. Amer. Math. Soc., Volume 25 (2012) no. 3, pp. 863-905 | DOI | Zbl | MR
[Dan20] Degrees of iterates of rational maps on normal projective varieties, Proc. London Math. Soc. (3), Volume 121 (2020) no. 5, pp. 1268-1310 | DOI | Zbl | MR
[DK18] Geometric group theory, Amer. Math. Soc. Colloquium Publ., 63, American Mathematical Society, Providence, RI, 2018 | DOI | MR
[Fav10] Le groupe de Cremona et ses sous-groupes de type fini, Séminaire Bourbaki. Volume 2008/2009 (Astérisque), Volume 332, Société Mathématique de France, Paris, 2010, pp. 11-43 (Exp. No. 998) | Numdam | Zbl | MR
[Giz80] Rational -surfaces, Izv. Akad. Nauk SSSR Ser. Mat., Volume 44 (1980) no. 1, pp. 110-144 | Zbl | MR
[GLU24] Cremona groups over finite fields, Neretin groups, and non-positively curved cube complexes, Internat. Math. Res. Notices (2024) no. 1, pp. 554-596 | DOI | Zbl | MR
[Gri16] Parabolic automorphisms of projective surfaces (after M. H. Gizatullin), Moscow Math. J., Volume 16 (2016) no. 2, pp. 275-298 | DOI | Zbl | MR
[HO21] Locally elliptic actions, torsion groups, and nonpositively curved spaces, 2021 | arXiv
[Jun09] The joint spectral radius: theory and applications, Lect. Notes in Control and Information Sci., 385, Springer, Berlin, Heidelberg, 2009 | DOI | MR
[Kar24] Decency of group actions on restricted products (2024) (in preparation)
[Lam24] The Cremona group (2024) (in preparation, available at https://www.math.univ-toulouse.fr/~slamy/blog/cremona.html)
[LU21] Actions of Cremona groups on cube complexes, Duke Math. J., Volume 170 (2021) no. 17, pp. 3703-3743 | Zbl | MR
[NOP22] Torsion groups do not act on 2-dimensional complexes, Duke Math. J., Volume 171 (2022) no. 6, pp. 1379-1415 | Zbl | MR
[RS60] A note on the joint spectral radius, Indag. Math., Volume 22 (1960) no. 4, pp. 379-381 | DOI | Zbl | MR
[Sch22] Relations in the Cremona group over a perfect field, Ann. Inst. Fourier (Grenoble), Volume 72 (2022) no. 1, pp. 1-42 | DOI | Numdam | Zbl | MR
[Ser80] Trees, Springer-Verlag, Berlin-New York, 1980 | DOI | MR
[Ser10] Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki. Volume 2008/2009 (Astérisque), Volume 332, Société Mathématique de France, Paris, 2010, pp. 75-100 (Exp. No. 1000) | Numdam | Zbl | MR
[Ure17] Subgroups of Cremona groups, Ph. D. Thesis, University of Basel (2017)
[Ure18] Remarks on the degree growth of birational transformations, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 291-308 | DOI | Zbl | MR
Cité par Sources :





