[Un point de vue analytique sur le principe de Hasse]
Working on non-Archimedean analytic curves, we propose a geometric approach to the study of the Hasse principle over function fields of curves defined over a complete discretely valued field. Using it, we show the Hasse principle to be verified for certain families of projective homogeneous spaces. As a consequence, we prove that said principle holds for quadratic forms and homogeneous varieties over unitary groups, results originally shown in [8], [36], and [33].
En travaillant sur des courbes analytiques non archimédiennes, nous proposons une approche géométrique de l’étude du principe de Hasse sur les corps de fonctions des courbes définies sur un corps discrètement valué complet. En l’utilisant, nous montrons que le principe de Hasse est vérifié pour certaines familles d’espaces projectifs homogènes. En conséquence, nous prouvons que ce principe est valable pour les formes quadratiques et les variétés homogènes sur les groupes unitaires, résultats initialement démontrés dans [8], [36], et [33].
Accepté le :
Publié le :
DOI : 10.5802/jep.268
Keywords: Local-global principle, Hasse principle, Berkovich curve, discrete valuation, homogeneous space, quadratic form
Mots-clés : Principe local-global, principe de Hasse, courbe de Berkovich, valuation discrète, espace homogène, forme quadratique
Mehmeti, Vlerë  1
CC-BY 4.0
@article{JEP_2024__11__875_0,
author = {Mehmeti, Vler\"e},
title = {An analytic viewpoint on the {Hasse} principle},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {875--908},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.268},
mrnumber = {4791994},
zbl = {07912279},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.268/}
}
TY - JOUR AU - Mehmeti, Vlerë TI - An analytic viewpoint on the Hasse principle JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 875 EP - 908 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.268/ DO - 10.5802/jep.268 LA - en ID - JEP_2024__11__875_0 ER -
Mehmeti, Vlerë. An analytic viewpoint on the Hasse principle. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 875-908. doi: 10.5802/jep.268
[1] Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, RI, 1990 | MR
[2] Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994) no. 3, pp. 539-571 | DOI | Zbl | MR
[3] Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume, Math. Ann., Volume 229 (1977) no. 1, pp. 25-45 | DOI | Zbl | MR
[4] The Hasse principle for groups of type E8, Dokl. Akad. Nauk SSSR, Volume 306 (1989) no. 5, pp. 1059-1063 | MR
[5] R-equivalence and special unitary groups, J. Algebra, Volume 209 (1998) no. 1, pp. 175-198 | DOI | Zbl | MR
[6] The rationality problem for semisimple group varieties, J. reine angew. Math., Volume 504 (1998), pp. 1-28 | Zbl | MR
[7] Local-global principles for constant reductive groups over semi-global fields, Michigan Math. J., Volume 72 (2022), pp. 77-144 | Zbl | MR
[8] Patching and local-global principles for homogeneous spaces over function fields of -adic curves, Comment. Math. Helv., Volume 87 (2012) no. 4, pp. 1011-1033 | DOI | Zbl | MR
[9] La structure des courbes analytiques (https://webusers.imj-prg.fr/~antoine.ducros/trirss.pdf)
[10] Triangulations of non-Archimedean curves, semi-stable reduction, and ramification, Ann. Inst. Fourier (Grenoble), Volume 73 (2023) no. 2, pp. 695-746 | Zbl | DOI | MR
[11] The index of an algebraic variety, Invent. Math., Volume 192 (2013) no. 3, pp. 567-626 | DOI | Zbl | MR
[12] Springer’s odd degree extension theorem for quadratic forms over semilocal rings, Indag. Math. (N.S.), Volume 32 (2021) no. 6, pp. 1290-1310 | DOI | Zbl | MR
[13] Une propriété des couples henséliens, Colloque d’algèbre commutative (Rennes, 1972), 1972 (Exp. No. 10, 13 p.) | Numdam | Zbl | MR
[14] Local-global principle for hermitian spaces over semi-global fields, 2022 | arXiv
[15] Applications of patching to quadratic forms and central simple algebras, Invent. Math., Volume 178 (2009) no. 2, pp. 231-263 | DOI | Zbl | MR
[16] Refinements to patching and applications to field invariants, Internat. Math. Res. Notices (2015) no. 20, pp. 10399-10450 | Zbl | DOI | MR
[17] Über die Galoiskohomologie halbeinfacher Matrizengruppen. I, Math. Z., Volume 90 (1965), pp. 404-428 | DOI | Zbl | MR
[18] Über die Galoiskohomologie halbeinfacher Matrizengruppen. II, Math. Z., Volume 92 (1966), pp. 396-415 | DOI | Zbl
[19] Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III, J. reine angew. Math., Volume 274/275 (1975), pp. 125-138 | Zbl | MR
[20] Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci., Volume 82 (1995), pp. 5-96 | DOI | Numdam | Zbl | MR
[21] Galois-Kohomologie halbeinfacher algebraischer Gruppen über -adischen Körpern. I, Math. Z., Volume 88 (1965), pp. 40-47 | DOI | Zbl | MR
[22] Galois-Kohomologie halbeinfacher algebraischer Gruppen über -adischen Körpern. II, Math. Z., Volume 89 (1965), pp. 250-272 | DOI
[23] The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, American Mathematical Society, Providence, RI, 1998 | MR
[24] Introduction to quadratic forms over fields, Graduate Studies in Math., 67, American Mathematical Society, Providence, RI, 2005 | MR
[25] A Springer theorem for Hermitian forms, Math. Z., Volume 252 (2006) no. 3, pp. 459-472 | DOI | Zbl | MR
[26] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Math., 6, Oxford University Press, Oxford, 2002 | DOI | MR
[27] Analytic functions on tubes of nonarchimedean analytic spaces, Algebra Number Theory, Volume 11 (2017) no. 3, pp. 657-683 | DOI | Zbl | MR
[28] Patching on Berkovich spaces and the local–global principle, Ph. D. Thesis, University of Caen Normandy (2019)
[29] Patching over Berkovich curves and quadratic forms, Compositio Math., Volume 155 (2019) no. 12, pp. 2399-2438 | DOI | Zbl | MR
[30] Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton, Algebraic Geom., Volume 2 (2015) no. 3, pp. 365-404 | DOI | Zbl | MR
[31] Homogeneous varieties—zero-cycles of degree one versus rational points, Asian J. Math., Volume 9 (2005) no. 2, pp. 251-256 | DOI | Zbl | MR
[32] Local-global principle for reduced norms over function fields of -adic curves, Compositio Math., Volume 154 (2018) no. 2, pp. 410-458 | DOI | Zbl | MR
[33] Local-global principle for classical groups over function fields of -adic curves, Comment. Math. Helv., Volume 97 (2022), pp. 255-304 | DOI | Zbl | MR
[34] Admissibility of groups over function fields of -adic curves, Adv. Math., Volume 237 (2013), pp. 316-330 | DOI | Zbl | MR
[35] The Stacks Project, 2019 (https://stacks.math.columbia.edu)
[36] Hasse principle for hermitian spaces over semi-global fields, J. Algebra, Volume 458 (2016), pp. 171-196 | DOI | Zbl | MR
Cité par Sources :





