The minimal exponent and k-rationality for local complete intersections
[Exposant minimal et k-rationalité pour les sous-variétés localement intersections complètes]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 849-873

We show that if Z is a local complete intersection subvariety of a smooth complex variety X, of pure codimension r, then Z has k-rational singularities if and only if α ˜(Z)>k+r, where α ˜(Z) is the minimal exponent of Z. We also characterize this condition in terms of the Hodge filtration on the intersection complex Hodge module of Z. Furthermore, we show that if Z has k-rational singularities, then the Hodge filtration on the local cohomology sheaf Z r (𝒪 X ) is generated at level dim(X)-α ˜(Z)-1 and, assuming that k1 and Z is singular, of dimension d, that k (Ω ̲ Z d-k )0. All these results have been known for hypersurfaces in smooth varieties.

Nous montrons que si Z est une sous-variété localement intersection complète d’une variété complexe lisse X, de codimension pure r, alors Z possède des singularités k-rationnelles si et seulement si α ˜(Z)>k+r, où α ˜(Z) est l’exposant minimal de Z. Nous caractérisons également cette condition en termes de filtration de Hodge sur le module de Hodge associé au complexe d’intersection de Z. De plus, nous montrons que si Z est à singularités k-rationnelles, alors la filtration de Hodge sur le faisceau de cohomologie locale Z r (𝒪 X ) est engendré au niveau dim(X)-α ˜(Z)-1 et, si de plus k1 et Z est singulière, de dimension d, que k (Ω ̲ Z d-k )0. Tous ces résultats sont connus pour les hypersurfaces dans les variétés lisses.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.267
Classification : 14F10, 14B05, 14J17, 32S35
Keywords: Minimal exponent, higher rational singularities, higher Du Bois singularities, Hodge modules, V-filtration
Mots-clés : Exposant minimal, singularités rationnelles supérieures, singularités de Du Bois supérieures, modules de Hodge, V-filtration

Chen, Qianyu  1   ; Dirks, Bradley  1   ; Mustaţă, Mircea  1

1 Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__849_0,
     author = {Chen, Qianyu and Dirks, Bradley and Musta\c{t}\u{a}, Mircea},
     title = {The minimal exponent and $k$-rationality for local complete intersections},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {849--873},
     year = {2024},
     publisher = {Ecole polytechnique},
     volume = {11},
     doi = {10.5802/jep.267},
     mrnumber = {4791993},
     zbl = {07912278},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jep.267/}
}
TY  - JOUR
AU  - Chen, Qianyu
AU  - Dirks, Bradley
AU  - Mustaţă, Mircea
TI  - The minimal exponent and $k$-rationality for local complete intersections
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 849
EP  - 873
VL  - 11
PB  - Ecole polytechnique
UR  - https://www.numdam.org/articles/10.5802/jep.267/
DO  - 10.5802/jep.267
LA  - en
ID  - JEP_2024__11__849_0
ER  - 
%0 Journal Article
%A Chen, Qianyu
%A Dirks, Bradley
%A Mustaţă, Mircea
%T The minimal exponent and $k$-rationality for local complete intersections
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 849-873
%V 11
%I Ecole polytechnique
%U https://www.numdam.org/articles/10.5802/jep.267/
%R 10.5802/jep.267
%G en
%F JEP_2024__11__849_0
Chen, Qianyu; Dirks, Bradley; Mustaţă, Mircea. The minimal exponent and $k$-rationality for local complete intersections. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 849-873. doi: 10.5802/jep.267

[BK81] Brylinski, J.-L.; Kashiwara, M. Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., Volume 64 (1981), pp. 387-410 | Zbl | DOI | MR

[BMS06] Budur, N.; Mustaţă, M.; Saito, M. Bernstein-Sato polynomials of arbitrary varieties, Compositio Math., Volume 142 (2006) no. 3, pp. 779-797 | DOI | Zbl | MR

[CD23] Chen, Q.; Dirks, B. On V-filtration, Hodge filtration and Fourier transform, Selecta Math. (N.S.), Volume 29 (2023) no. 4, 50, 76 pages | MR

[CDM24] Chen, Q.; Dirks, B.; Mustaţă, M. The minimal exponent of cones over smooth complete intersection projective varieties, 2024 | arXiv

[CDMO24] Chen, Q.; Dirks, B.; Mustaţă, M.; Olano, S. V-filtrations and minimal exponents for local complete intersections, J. Reine Angew. Math., Volume 811 (2024), pp. 219-256 | Zbl | MR

[DB81] Du Bois, P. Complexe de de Rham filtré d’une variété singulière, Bull. Soc. math. France, Volume 109 (1981) no. 1, pp. 41-81 | DOI | Zbl | MR | Numdam

[Eis95] Eisenbud, D. Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math., 150, Springer-Verlag, New York, 1995 | MR

[FL22a] Friedman, R.; Laza, R. Deformations of singular Fano and Calabi-Yau varieties, 2022 | arXiv

[FL22b] Friedman, R.; Laza, R. Higher Du Bois and higher rational singularities, 2022 (with an appendix by M. Saito, to appear in Duke. Math. J.) | arXiv

[FL24] Friedman, Robert; Laza, Radu The higher Du Bois and higher rational properties for isolated singularities, J. Algebraic Geom., Volume 33 (2024) no. 3, pp. 493-520 | DOI | Zbl | MR

[GNAPGP88] Guillén, F.; Navarro Aznar, V.; Pascual-Gainza, P.; Puerta, F. Hyperrésolutions cubiques et descente cohomologique, Lect. Notes in Math., 1335, Springer, 1988 | DOI

[HTT08] Hotta, R.; Takeuchi, K.; Tanisaki, T. D-modules, perverse sheaves, and representation theory, Birkhäuser, Boston, 2008 | DOI | MR

[JKSY22] Jung, S.-J.; Kim, I.-K.; Saito, M.; Yoon, Y. Higher Du Bois singularities of hypersurfaces, Proc. London Math. Soc. (3), Volume 125 (2022) no. 3, pp. 543-567 | DOI | Zbl | MR

[Kas83] Kashiwara, M. Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) (Lect. Notes in Math.), Volume 1016, Springer, Berlin, 1983, pp. 134-142 | DOI | Zbl | MR

[Mal83] Malgrange, B. Polynômes de Bernstein-Sato et cohomologie évanescente, Analyse et topologie sur les espaces singuliers (Luminy, 1981) (Astérisque), Volume 101, Société Mathématique de France, Paris, 1983, pp. 243-267 | Zbl | Numdam | MR

[MOPW23] Mustaţă, M.; Olano, S.; Popa, M.; Witaszek, J. The Du Bois complex of a hypersurface and the minimal exponent, Duke Math. J., Volume 172 (2023) no. 7, pp. 1411-1436 | DOI | Zbl | MR

[MP20a] Mustaţă, M.; Popa, M. Hodge filtration, minimal exponent, and local vanishing, Invent. Math., Volume 220 (2020) no. 2, pp. 453-478 | Zbl | DOI | MR

[MP20b] Mustaţă, M.; Popa, M. Hodge ideals for Q-divisors, V-filtration, and minimal exponent, Forum Math. Sigma, Volume 8 (2020), e19, 41 pages | DOI | Zbl | MR

[MP22a] Mustaţă, M.; Popa, M. Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension, Forum Math. Pi, Volume 10 (2022), e22, 58 pages | DOI | Zbl | MR

[MP22b] Mustaţă, M.; Popa, M. On k-rational and k-Du Bois local complete intersections, 2022 (to appear in Algebraic Geometry) | arXiv

[Ola23] Olano, S. Weighted Hodge ideals of reduced divisors, Forum Math. Sigma, Volume 11 (2023), 51, 28 pages | DOI | Zbl | MR

[PS08] Peters, C.; Steenbrink, J. Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3), 52, Springer-Verlag, Berlin, 2008 | MR

[Sai84] Saito, M. Hodge filtrations on Gauss-Manin systems. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 30 (1984) no. 3, pp. 489-498 | Zbl | MR

[Sai88] Saito, M. Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., Volume 24 (1988) no. 6, pp. 849-995 | DOI | Zbl

[Sai90] Saito, M. Mixed Hodge modules, Publ. RIMS, Kyoto Univ., Volume 26 (1990) no. 2, pp. 221-333 | Zbl | DOI

[Sai93] Saito, M. On b-function, spectrum and rational singularity, Math. Ann., Volume 295 (1993) no. 1, pp. 51-74 | DOI | Zbl | MR

[Sai94] Saito, M. On microlocal b-function, Bull. Soc. math. France, Volume 122 (1994) no. 2, pp. 163-184 | DOI | Zbl | MR | Numdam

[Sai00] Saito, M. Mixed Hodge complexes on algebraic varieties, Math. Ann., Volume 316 (2000) no. 2, pp. 283-331 | DOI | Zbl | MR

Cité par Sources :