[Exposant minimal et k-rationalité pour les sous-variétés localement intersections complètes]
We show that if is a local complete intersection subvariety of a smooth complex variety , of pure codimension , then has -rational singularities if and only if , where is the minimal exponent of . We also characterize this condition in terms of the Hodge filtration on the intersection complex Hodge module of . Furthermore, we show that if has -rational singularities, then the Hodge filtration on the local cohomology sheaf is generated at level and, assuming that and is singular, of dimension , that . All these results have been known for hypersurfaces in smooth varieties.
Nous montrons que si est une sous-variété localement intersection complète d’une variété complexe lisse , de codimension pure , alors possède des singularités -rationnelles si et seulement si , où est l’exposant minimal de . Nous caractérisons également cette condition en termes de filtration de Hodge sur le module de Hodge associé au complexe d’intersection de . De plus, nous montrons que si est à singularités -rationnelles, alors la filtration de Hodge sur le faisceau de cohomologie locale est engendré au niveau et, si de plus et est singulière, de dimension , que . Tous ces résultats sont connus pour les hypersurfaces dans les variétés lisses.
Accepté le :
Publié le :
DOI : 10.5802/jep.267
Keywords: Minimal exponent, higher rational singularities, higher Du Bois singularities, Hodge modules, V-filtration
Mots-clés : Exposant minimal, singularités rationnelles supérieures, singularités de Du Bois supérieures, modules de Hodge, V-filtration
Chen, Qianyu  1 ; Dirks, Bradley  1 ; Mustaţă, Mircea  1
CC-BY 4.0
@article{JEP_2024__11__849_0,
author = {Chen, Qianyu and Dirks, Bradley and Musta\c{t}\u{a}, Mircea},
title = {The minimal exponent and $k$-rationality for local complete intersections},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {849--873},
year = {2024},
publisher = {Ecole polytechnique},
volume = {11},
doi = {10.5802/jep.267},
mrnumber = {4791993},
zbl = {07912278},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jep.267/}
}
TY - JOUR AU - Chen, Qianyu AU - Dirks, Bradley AU - Mustaţă, Mircea TI - The minimal exponent and $k$-rationality for local complete intersections JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 849 EP - 873 VL - 11 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.267/ DO - 10.5802/jep.267 LA - en ID - JEP_2024__11__849_0 ER -
%0 Journal Article %A Chen, Qianyu %A Dirks, Bradley %A Mustaţă, Mircea %T The minimal exponent and $k$-rationality for local complete intersections %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 849-873 %V 11 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.267/ %R 10.5802/jep.267 %G en %F JEP_2024__11__849_0
Chen, Qianyu; Dirks, Bradley; Mustaţă, Mircea. The minimal exponent and $k$-rationality for local complete intersections. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 849-873. doi: 10.5802/jep.267
[BK81] Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., Volume 64 (1981), pp. 387-410 | Zbl | DOI | MR
[BMS06] Bernstein-Sato polynomials of arbitrary varieties, Compositio Math., Volume 142 (2006) no. 3, pp. 779-797 | DOI | Zbl | MR
[CD23] On -filtration, Hodge filtration and Fourier transform, Selecta Math. (N.S.), Volume 29 (2023) no. 4, 50, 76 pages | MR
[CDM24] The minimal exponent of cones over smooth complete intersection projective varieties, 2024 | arXiv
[CDMO24] -filtrations and minimal exponents for local complete intersections, J. Reine Angew. Math., Volume 811 (2024), pp. 219-256 | Zbl | MR
[DB81] Complexe de de Rham filtré d’une variété singulière, Bull. Soc. math. France, Volume 109 (1981) no. 1, pp. 41-81 | DOI | Zbl | MR | Numdam
[Eis95] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math., 150, Springer-Verlag, New York, 1995 | MR
[FL22a] Deformations of singular Fano and Calabi-Yau varieties, 2022 | arXiv
[FL22b] Higher Du Bois and higher rational singularities, 2022 (with an appendix by M. Saito, to appear in Duke. Math. J.) | arXiv
[FL24] The higher Du Bois and higher rational properties for isolated singularities, J. Algebraic Geom., Volume 33 (2024) no. 3, pp. 493-520 | DOI | Zbl | MR
[GNAPGP88] Hyperrésolutions cubiques et descente cohomologique, Lect. Notes in Math., 1335, Springer, 1988 | DOI
[HTT08] D-modules, perverse sheaves, and representation theory, Birkhäuser, Boston, 2008 | DOI | MR
[JKSY22] Higher Du Bois singularities of hypersurfaces, Proc. London Math. Soc. (3), Volume 125 (2022) no. 3, pp. 543-567 | DOI | Zbl | MR
[Kas83] Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) (Lect. Notes in Math.), Volume 1016, Springer, Berlin, 1983, pp. 134-142 | DOI | Zbl | MR
[Mal83] Polynômes de Bernstein-Sato et cohomologie évanescente, Analyse et topologie sur les espaces singuliers (Luminy, 1981) (Astérisque), Volume 101, Société Mathématique de France, Paris, 1983, pp. 243-267 | Zbl | Numdam | MR
[MOPW23] The Du Bois complex of a hypersurface and the minimal exponent, Duke Math. J., Volume 172 (2023) no. 7, pp. 1411-1436 | DOI | Zbl | MR
[MP20a] Hodge filtration, minimal exponent, and local vanishing, Invent. Math., Volume 220 (2020) no. 2, pp. 453-478 | Zbl | DOI | MR
[MP20b] Hodge ideals for -divisors, -filtration, and minimal exponent, Forum Math. Sigma, Volume 8 (2020), e19, 41 pages | DOI | Zbl | MR
[MP22a] Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension, Forum Math. Pi, Volume 10 (2022), e22, 58 pages | DOI | Zbl | MR
[MP22b] On -rational and -Du Bois local complete intersections, 2022 (to appear in Algebraic Geometry) | arXiv
[Ola23] Weighted Hodge ideals of reduced divisors, Forum Math. Sigma, Volume 11 (2023), 51, 28 pages | DOI | Zbl | MR
[PS08] Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3), 52, Springer-Verlag, Berlin, 2008 | MR
[Sai84] Hodge filtrations on Gauss-Manin systems. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 30 (1984) no. 3, pp. 489-498 | Zbl | MR
[Sai88] Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., Volume 24 (1988) no. 6, pp. 849-995 | DOI | Zbl
[Sai90] Mixed Hodge modules, Publ. RIMS, Kyoto Univ., Volume 26 (1990) no. 2, pp. 221-333 | Zbl | DOI
[Sai93] On -function, spectrum and rational singularity, Math. Ann., Volume 295 (1993) no. 1, pp. 51-74 | DOI | Zbl | MR
[Sai94] On microlocal -function, Bull. Soc. math. France, Volume 122 (1994) no. 2, pp. 163-184 | DOI | Zbl | MR | Numdam
[Sai00] Mixed Hodge complexes on algebraic varieties, Math. Ann., Volume 316 (2000) no. 2, pp. 283-331 | DOI | Zbl | MR
Cité par Sources :





