Article de recherche - Analyse numérique
The local limit theorem for complex valued sequences: the parabolic case
[Le théorème de la limite locale pour les suites complexes  : le cas parabolique]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1801-1818

We give a complete expansion, at any accuracy order, for the iterated convolution of a complex valued integrable sequence in one space dimension. The remainders are estimated sharply with generalized Gaussian bounds. The result applies in probability theory for random walks as well as in numerical analysis for studying the large time behavior of numerical schemes.

Nous donnons un développement asymptotique à tout ordre pour la convolution itérée d’une suite complexe intégrable en une dimension d’espace. Les restes sont estimés de manière optimale avec une borne Gaussienne généralisée. Le résultat s’applique tant en théorie des probabilités pour les marches aléatoires qu’en analyse numérique pour le comportement en temps grand de schémas numériques aux différences finies.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.685
Classification : 42A85, 35K25, 60F99, 65M12
Keywords: Convolution, asymptotic expansion, stability, local limit theorem
Mots-clés : Convolution, développement asymptotique, stabilité, théorème de la limite locale

Coulombel, Jean-François  1   ; Faye, Grégory  1

1 Institut de Mathématiques de Toulouse – UMR 5219, Université de Toulouse, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9 , France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1801_0,
     author = {Coulombel, Jean-Fran\c{c}ois and Faye, Gr\'egory},
     title = {The local limit theorem for complex valued sequences: the parabolic case},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1801--1818},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.685},
     zbl = {07949988},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.685/}
}
TY  - JOUR
AU  - Coulombel, Jean-François
AU  - Faye, Grégory
TI  - The local limit theorem for complex valued sequences: the parabolic case
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1801
EP  - 1818
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.685/
DO  - 10.5802/crmath.685
LA  - en
ID  - CRMATH_2024__362_G12_1801_0
ER  - 
%0 Journal Article
%A Coulombel, Jean-François
%A Faye, Grégory
%T The local limit theorem for complex valued sequences: the parabolic case
%J Comptes Rendus. Mathématique
%D 2024
%P 1801-1818
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.685/
%R 10.5802/crmath.685
%G en
%F CRMATH_2024__362_G12_1801_0
Coulombel, Jean-François; Faye, Grégory. The local limit theorem for complex valued sequences: the parabolic case. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1801-1818. doi: 10.5802/crmath.685

[1] Bui, Huan Q.; Randles, Evan A generalized polar-coordinate integration formula with applications to the study of convolution powers of complex-valued functions on d , J. Fourier Anal. Appl., Volume 28 (2022) no. 2, 19, 74 pages | DOI | MR | Zbl

[2] Brenner, Philip; Thomée, Vidar; Wahlbin, Lars B. Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Mathematics, 434, Springer, 1975, ii+154 pages | DOI | MR | Zbl

[3] Bouche, Daniel; Weens, William Analyse quantitative des schémas numériques pour les équations aux dérivées partielles, EDP Sciences, 2024 | DOI | Zbl

[4] Coulombel, Jean-François; Faye, Grégory Generalized Gaussian bounds for discrete convolution powers, Rev. Mat. Iberoam., Volume 38 (2022) no. 5, pp. 1553-1604 | DOI | MR | Zbl

[5] Comtet, Louis Advanced combinatorics, D. Reidel Publishing Co., 1974, xi+343 pages (The art of finite and infinite expansions) | MR | Zbl | DOI

[6] Coulombel, Jean-François The Green’s function of the Lax–Wendroff and Beam–Warming schemes, Ann. Math. Blaise Pascal, Volume 29 (2022) no. 2, pp. 247-294 | DOI | MR | Zbl | Numdam

[7] Cœuret, L. Local limit theorem for complex valued sequences (2022) (to appear in Asymptotic Anal. https://arxiv.org/abs/2201.01514)

[8] Després, Bruno Finite volume transport schemes, Numer. Math., Volume 108 (2008) no. 4, pp. 529-556 | DOI | MR | Zbl

[9] Després, Bruno Uniform asymptotic stability of Strang’s explicit compact schemes for linear advection, SIAM J. Numer. Anal., Volume 47 (2009) no. 5, pp. 3956-3976 | DOI | MR | Zbl

[10] Diaconis, Persi; Saloff-Coste, Laurent Convolution powers of complex functions on , Math. Nachr., Volume 287 (2014) no. 10, pp. 1106-1130 | DOI | MR | Zbl

[11] Hedstrom, G. W. Norms of powers of absolutely convergent Fourier series, Mich. Math. J., Volume 13 (1966), pp. 393-416 | DOI | MR | Zbl

[12] Lax, P. D.; Richtmyer, R. D. Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., Volume 9 (1956), pp. 267-293 | DOI | MR | Zbl

[13] Petrov, V. V. Sums of independent random variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, 82, Springer, 1975, x+346 pages (Translated from the Russian by A. A. Brown) | MR | Zbl

[14] Randles, Evan Local limit theorems for complex functions on d , J. Math. Anal. Appl., Volume 519 (2023) no. 2, 126832, 64 pages | DOI | MR | Zbl

[15] Randles, Evan; Saloff-Coste, Laurent On the convolution powers of complex functions on , J. Fourier Anal. Appl., Volume 21 (2015) no. 4, pp. 754-798 | DOI | MR | Zbl

[16] Randles, Evan; Saloff-Coste, Laurent Convolution powers of complex functions on d , Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 1045-1121 | DOI | MR | Zbl

[17] Randles, Evan; Saloff-Coste, Laurent On-diagonal asymptotics for heat kernels of a class of inhomogeneous partial differential operators, J. Differ. Equations, Volume 363 (2023), pp. 67-125 | DOI | MR | Zbl

[18] Rudin, Walter Real and complex analysis, McGraw-Hill, 1987, xiv+416 pages | Zbl | MR

[19] Strang, Gilbert Trigonometric polynomials and difference methods of maximum accuracy, J. Math. Phys., Volume 41 (1962), pp. 147-154 | DOI | Zbl

[20] Szegő, Gábor Orthogonal polynomials, Colloquium Publications, XXIII, American Mathematical Society, 1975, xiii+432 pages | MR | Zbl

[21] Thomée, Vidar Stability of difference schemes in the maximum-norm, J. Differ. Equations, Volume 1 (1965), pp. 273-292 | DOI | MR | Zbl

Cité par Sources :