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1. Introduction

The local limit theorem in probability theory [13, Chapter VII] gives an asymptotic expansion of
the probability:

PXi+--+Xn=])
where Xj,...,X},... are independent, identically distributed, random variables with values in
Z. Some versions of the local limit theorem even consider non identically distributed random
variables. Usually, the expansion is understood in the sense that the discrete time n becomes
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large, and one wishes to obtain remainders that are, at least, uniform with respect to the position
j € Z. The terms in the expansion correspond to increasing powers of /2, and the leading term
in the expansion is a suitably scaled Gaussian function, as can be expected from the central limit
theorem. As a matter of fact, summing with respect to j the leading term in the expansion, we
expect to recover in the expression:
J
PXi+-+XpsN= ) PXG+-+Xp=])
J=—00

an approximation by some kind of Riemann sum of the cumulative distribution function of a
normal distribution (evaluated at some well-chosen point).

When all random variables are assumed to be independent and identically distributed, the
probability P(X; +--- + X, = j) corresponds to the value at the index j of the iterated convolution
(n—1)-times of the sequence (P(X; = ¢))scz with itself. Following, among others, the series of
works [4, 7, 8, 10, 11, 14-16, 21], we aim here at giving a complete asymptotic expansion of
such iterated convolutions without making any positivity assumption, that is by going beyond
the probabilistic framework. The article [10] gives a large overview of examples where this issue
is meaningful. As explained and evidenced in [15], dropping the positivity assumption yields a
much larger variety of possible behaviors that correspond, in the language of partial differential
equations, either to parabolic or dispersive behaviors. The present work focuses on the parabolic
case, which is the stable case in [21] (the case in which the iterated convolutions will be bounded
in the ¢! norm). The dispersive case will be dealt with in a subsequent work.

The results in the above mentioned references contained either technical restrictions on the
Fourier transform! of the considered sequence or did not provide sharp enough estimates for
the remainders so that they could be used, e.g., to give error estimates for numerical analysis
purposes (see for instance Corollary 5 below). In this article, we drop all previous technical
restrictions and give an asymptotic expansion up to any order with a sharp, generalized Gaussian
estimate for the remainders. The latter estimates yield optimal large time decay estimates for
numerical schemes. An example of a third order finite difference approximation of the transport
equation is detailed in order to illustrate our main result.

Notation. In all this article, we let B(z,0) denote the open disk in the complex plane {w €
C||z — w| < 6} that is centered at z and has radius 6 > 0. We also let €(z,0) denote the open
square {w € C| max(|Re(z — w)|,|Im (z — w)| < 6} in the complex plane that is centered at z and
whose side length equals 25. Eventually we let S! denote the unit circle in C. Any other notation
is meant to be self-explanatory or is introduced in the core of the article.

2. Assumptions and main result

For any two complex valued sequences a = (a¢)scz and b = (by) ¢z such that the quantity below
makes sense, the convolution a x b of @ and b is defined as:

a*b::(z a[_[rb[r) .
l'ez e

For instance, the celebrated Young’s inequality shows that, for @ and b in the space of complex
valued integrable sequences ¢!(Z;C), the convolution a x b is well defined and also belongs to
¢1(Z;C), which endows this space with a Banach algebra structure. The goal of this article is
to study the geometric sequences (at least, some of them) in this algebra. In all this article, we
consider a fixed complex valued sequence a = (a,) ez and we make the following assumption.

1 This function is referred to as the characteristic function in probability theory, see [13].
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Assumption 1. The sequence a = (ay) ez belongs to £'(Z;C) and its associated Fourier series:

Fo : (eC— Y agl’,
lezZ
defines a holomorphic function on an annulus{{ € C|1—¢ < |{| < 1+¢} for somee > 0. Furthermore,
there holds:
sup |Fa(x)|=1.
xeS!

The latter normalization for the maximum of | F,| on the unit circle is made in order to avoid
introducing additional terms in the main result below. In numerical analysis, this normalization
corresponds to the von Neumann stability condition [12]. Fixing the maximum to 1 can always
be achieved up to multiplying the considered sequence a by some positive number. Thanks to
Cauchy’s formula [18], the holomorphy of F, on an annulus that contains the unit circle S is
equivalent to the existence of a positive constant c such that:

sup el ay| < +oo. (1)
lezZ
We now recall the following alternative that has already been proved in our former work [7] (see
also [2, p. 98]):

Lemma 2 ([7, Lemma A.1]). Let the sequence a satisfy Assumption 1. Then one of the following is
satisfied:

o F4(x) has modulus 1 for anyx € S' (e.g., F, is a Blaschke product [18]),
e there exists a finite set of pairwise distinct points {x,,...,Kg}, K= 1, in S' such that F, (x;)
has modulus 1 forany k€ {1,...,K} and:

VK€§1\{£1,...,£K}, |Fu(1<)‘ <1.

We explore in this article the behavior of the iterated convolutions a % - - - x @ when a satisfies
Assumption 1 and also satisfies the second possibility in Lemma 2. We refer below to the Fg4(x)’s
as to tangency points since these are the points where the curve? {F, (k) |x € S!} meets the unit
circle S!. The reader interested in the first case of Lemma 2 may consult [11] and [2, Theorem 3.1].
We shall make the following crucial assumption in what follows.

Assumption 3. The sequence a satisfies Assumption 1 and its Fourier series F, satisfies the second
possibility in Lemma 2. Moreover, at any point X € Sl ke l,..., K}, where the modulus of F,
attains the value 1, there exists a real number a ., a complex number B with positive real part and
a nonzero integer ;. € N* such that, as the complex number ¢ tends to zero, there holds:

Fa[x€) = Faicy) exp iaxg - Big® + 0@ 1)), @

Let us fix some more notation. First, the iterated convolution a*”" is defined by a*! := a and
for any n e N*, a*"*V := a*" x a, which corresponds to the geometric sequence associated with
a in the algebra ¢1(Z;C). Then, following [15], for any nonzero integer u € N* and for any complex
number f with positive real part, we introduce the function:

1 .
HY, : xeR— gfwe"xge‘ﬁ(’z” do. 3)

These functions (referred to as attractors in [15]) will play a major role in the asymptotic expan-
sions of this article. Some of their basic properties are recalled later on. We now try, as much as
possible, to stick to the notation in [13]. Using Assumptions 1 and 3, we consider a point k. € st

2Because of Assumption 1, this curve is located inside the closed unit disk.
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at which F, has modulus 1. Up to using the logarithm, for any sufficiently small ¢{ € C, we can
write Fg (K, el®) as the convergent power series:
ic) _ . o Ykv . pv
Fafip ) = Falic expliars - e+ Y 2g" ). @
v22 pp+1 .
The coefficients y, play the role of cumulants in probability theory. Starting from the power
series expansion (4), we follow [13] and expand a power series in two variables (Y, Z) as follows:
Yk2pue+v 2 U +v v) m
ex =YY ZV =1+ PV Z™, 5)
P(VZEI @i +v)! ,,; fom
where the Py ,,’s are polynomials with complex coefficients that depend on the cumulants yy

(see several formulas below based on the Faa di Bruno formula [5]). With the above notation, our
main result reads as follows.

Theorem 4. Let the sequence a satisfy Assumptions 1 and 3. Then there exist an integer L € N*
and some positive constant cy > 0 such that for any n e N* and ¢ € Z with |¢| > L n, there holds:

la;"| < exp(—con—colfl). (6)

Moreover, for any integer M € N, there exist some positive constants Cyy and cyy (that depend on M
and a) such that the following holds: for any n e N* and ¢ € Z with |¢| < L n, there holds:

Kk {Fa(ic;)" C—ain) K M xlFax)" {—apn
a"— Z =k 2k P Ky Z Z =k =k (Pkm(—d/dx)Hﬁk ) k
4 = nl/Cup) 2pe | pl/Cu) = e nm+1)72 ) ’ 2pe) \ pl/@ug)
2
X 1 |€ — ay n|\Zue-1
k A
< S — e
=Cm k; L2 2p P CM( IRV ) ()

where the polynomials Py, ,,, are defined in (5).

Let us make several comments on Theorem 4. In probability theory, the sequence a is given
by ay = P(X; = ¢). It contains only non-negative real numbers that sum to 1. Assumption 1 is
therefore satisfied if and only if the a,’s satisfy a bound of the form (1) for some constant ¢ > 0.
In that case, the first scenario in Lemma 2 is possible if and only if one single a, equals 1 and all
other are zero. This scenario corresponds to a deterministic random walk where, at each time
step, one makes a translation of a fixed number ¢, on the grid Z. Let us therefore assume that the
sequence a possesses at least two nonzero elements and that, for simplicity®, F, has modulus 1
only at k = 1 for k € S!. This corresponds to K = 1 in the notation of Assumption 3, with x, =1
and F,(x,) = 1. Moreover, @ is nothing but the mean of the random variable Xj, y; = 1 and
2P = 0'% > 0 is the variance of X;. From the definition (3), we compute:

b1 1 x?
VxeR, H, (x):\/mexp —m .

The asymptotic expansion provided by Theorem 4 reads:

1 ([—aln)z) 1 5 ([_aln)
[ == exp| —— (P (~d/dx) H! ,
a; 4ﬂﬁ1nexp( in +r21 n(m+l)/2( 1,m( x)H, ) 7

It can be rewritten, as in [13, Chapter VII], in terms of Hermite polynomials by using the

properties of the Gaussian function (the so-called Rodrigues formula for Hermite polynomials,

see [20]). For instance, we shall see below that the polynomial P; ; is given by:

Y13
3!

Ppi(X) === X3,

3Some rare cases yield K = 2, take for instance a_; = a; =1/2.
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where v 3 is the cumulant of order 3 at the zero frequency, see (4). This means that the two first
terms (M = 1) in the expansion (7) are:

1 (C—an)?*\ Y13 (,.p\"[({-an
v A LA R vl
4nBin 4p1n 3ln vn

and these two first terms can be rewritten as (recall the relation 2 8; = U%):

1 x2 Y13 ., 3 1 ( xz) ) _l-an
\/mexp( > ) 3!0‘1171 (x* —3x) mexp 5| with  x: A

which coincides with the expression in [13, Theorem 13, p. 205]. If we compare Theorem 4 above
with [13, Chapter VII], the novelty is the (sharp) estimate of the remainder with a Gaussian bound
rather than a uniform bound as o(n=™*1/2) or O(n=™*2/2) which would not allow to obtain
error bounds such as (8) in Corollary 5 below. The price to pay is the holomorphy condition on
F, in Assumption 1.

One can also try to compare Theorem 4 with the well-known stability results derived in [21],
see also [2, Chapter 5], for finite difference schemes. Actually, the article [21] is the fundamental
reference where the condition (2) on the Fourier transform F, was first highlighted. The emphasis
in [21] or [2] was rather on deriving stability bounds on the iterated convolution operator
u — a*" x u. These bounds are used in [2] to derive convergence estimates, mostly on finite
time intervals. Our goal here is slightly different since we rather aim at studying the large time
behavior of the iterated convolution operator which could open the possibility of studying large
time convergence estimates.

An immediate corollary of Theorem 4 is the following result which gives an accurate descrip-
tion of the large time behavior of the iterated convolution a*” * u° for any initial condition
u’ € ¢P(Z;C). Corollary 5 below yields an explicit expression for the large time asymptotics of
a finite difference scheme corresponding to the convolution with a sequence a that satisfies both
Assumptions 1 and 3. It can be used to justify in a sharp quantitative way the link between a
numerical scheme and its associated modified equation.

Corollary 5. Let the sequence a satisfy Assumptions 1 and 3. Then for any integer M € N, there
exists a constant Cy; > 0 such that for any sequence u® € ¢”(Z;C) with 1 < p < +oo and for any
n e N*, there holds:

K =% n
a*”*uo—z K Falkp)™ g (-—axn u°
= nl/2pg) 20\ pl/2ug)

M X K;[Fa(ﬁk)n

- Tk _2=k - Be [ =%k ), 0
mz=1k; DT 2 i) (Pk’m( d/dx)HZMk) (nll(Zuk))*"

with p:= maxy (.

Crm 1t ¢p

= M ®)
op

Some analogues of Theorem 4 are proved in [4, 14-16], sometimes with restrictions on K
(number of tangency points) and/or on the drifts ay, and/or on M (number of terms in the
asymptotic expansion). As far as we know, our framework seems to be the most general so far.
Our only (crucial!) assumption is the fact that F, has an expansion of the form (2) at every
tangency point. According to the main result in [21], this corresponds to a stable situation where
the geometric sequence (a*"),en+ is bounded in ¢!(Z;C). From the point of view of partial
differential equations, the above asymptotic expansion involves the fundamental solution of
some parabolic equation.

Other forms for the expansion (2) would lead to dispersive behaviors, a prototype of which
(the so-called Lax-Wendroff scheme, see [1]) is studied in depth in [6]. In the dispersive case,
the geometric sequence (a*™) ,en+ is no longer bounded in ¢1(Z;C). The reference [1, Chapter 5]
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provides with several comparisons for the Green’s function in this case but a complete derivation
of a large time expansion with sharp bounds is still missing. We shall deal with the local
limit theorem (up to any order) in the dispersive case in a subsequent work. Another very
interesting perspective would be to derive analogues of Theorem 4 in the multi-dimensional
setting where the sequence a is now indexed on the d-dimensional lattice Z¢, with d = 2. We
refer to [3, 14, 16, 17] for recent developments on the subject. Let us emphasize that the multi-
dimensional setting presents a much richer classification of the tangency points compared to
the one-dimensional case which has only two cases*. Borrowing the terminology used in the
aforementioned references, the multi-dimensional analogue of the parabolic case studied here
would correspond to the case where all tangency points of F,, are of positive homogeneous type,
see [16, Definition 1.3.].

When the sequence a has finite support, the bound (7) holds true not only in a large sector
{I¢] = Ln} but for any ¢ € Z (see [4]). The statement of Theorem 4 in that case is therefore more
simple since one obtains a global bound for the error between a;” and its asymptotic expansion.
In the general case of a holomorphic F,, the decay of a;” at infinity (for a fixed n) is at best
exponential which makes the distinction of the two regimes in Theorem 4 relevant. Several
applications of Theorem 4 are given below in Section 4. We now give the proof of Theorem 4.

3. Proof of Theorem 4

Theorem 4 will ultimately justify that the iterated convolution a;" is mostly concentrated around
the K sectors Ur{(¢,n) | ¢ ~ aj n}, meaning in particular that a}" is to some extent negligible for
|¢] > n. We therefore first study this far field regime where (¢, n) is outside a large enough sector
and then turn to the main purpose of this work which is the proof of (7).

3.1. The far field regime

We first consider the case where the ratio ||/ n is large. We start from the expression:

1 T, .
u;n — _f e—lé@ Fa(ele)nde’
2mJ-n

and use the fact that the function F, has a holomorphic extension on an annulus around S'. Let

us assume ¢ > 0 and let us change the integration contour by using the Cauchy formula. Choosing
for instance ¢ :=In(1 + £/2), with £ > 0 given by Assumption 1, we obtain:

1 T . s s
as = _f e (0eil0 | (@l0-1))n gg
21 J-n

Applying the triangle inequality, we thus get the bound:

n
Ia’;”ISe_m sup |Fae®el?)| ,
Oe[-m,m)

meaning that for some well-chosen constant C, > 0 that does not depend on ¢ and n, there holds:
la;"| < exp(—6£+Cb n),

aslongas neN* and ¢ = 0. For ¢ = (2 C,/0) n, we thus have:

1) 1) G
*n _ __p_ 0
la, Isexp( Zé)sexp( 4[ 2”)'

4The two cases are the parabolic case, as studied here, and the dispersive case, as addressed in [2, 6, 11, 15, 21].
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We have thus proved the validity of (6) for £ = Ln and L > 0 is a well-chosen constant (there is no
loss of generality in assuming that L is an integer up to increasing L). The case ¢ < 0 is entirely
similar and is left to the interested reader.

From now on, the integer L of Theorem 4 is fixed as above, and we shall always assume that
¢ € 7 is restricted to those values for which |¢| < L n, with n € N* the discrete time.

3.2. The local limit theorem

3.2.1. Fixing the constants

The aim of this paragraph is to fix several constants that will arise in various estimates for
proving Theorem 4. We start with the following simple observation.

Lemma 6. Letf3 € C have positive real part and let € N*. Then there exists a constant C > 0 such
that for any u € C, there holds:

(Re w)** — C (Im u)**.

Re (BuH) = R%ﬁ

Proof. The proof simply consists in expanding:

Re (Bu**) = (Re f) Re u*H) — (Im B) (Im u?H),

and then in expanding both the real and imaginary parts of u?#. Writing u = x +1iy, we obtain:

u
Re (But) = (Re f) x** + (Ref) Y. (Zﬂ)(-l)mxﬂ“"")yzm
m=1 2m

~(mp) Z (2 ﬁl)(—l)mx2<u—m>—1yzm+1,

By repeatedly using Holder’s and Young’s inequalities, we can obtain the estimate:

2m+1

u
(ReB) Z( m)( 1)™ g2 H=m) 2m _(1m g) Z( 2p )(_1)mx2(u—m)—1y2m+1
m=1

< RZﬁ x2p+cy2p,

with a large enough constant C (that does not depend on x and y). This gives the result of
Lemma 6. O

Using Assumption 3 and Lemma 6, we can fix once and for all two constants 8. > 0 and g* = .
such that the following inequalities hold true:
Vk=1,...,K, VueC, Re(fiu?M*)=p, Reu)* s —p* Imu)*Fr. 9)
These inequalities will be helpful later on. We now prove another useful preliminary result.

Lemma 7. Let k€ {l,...,K}, and let the coefficients vy, be defined in (4) for v = 2uy +1. Then
there exists &y > 0 such that the function:

. . 2 ik Yk2up+v 2V
gk : (w, 2) € C x B(0,8) exp( VZ>1 Cup i’ ) (10)
is holomorphic on C x B(0,8y). Furthermore, for any M € N, there exists a constant C = C(k, M) >0
and some d € (0,0¢) such that there holds:
M m
a m

where B, and B* are the constants in (9).

VY (w,2) ECx€(0,6), |gr(w, z) — <C|z|M+1exp(ﬁ2* (Re w)?Hk + B* (Im w)2H* |,

ZM
0)—

m=0
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Proof. Since F, is holomorphic on an annulus {{ € C|1—-¢ < |{| < 1 +¢€}, for some € > 0, the power
series (in Z):
Z Yiv VAR
v=22 (g +1 v!
has a positive convergence radius. This implies that for some 6y > 0, the function g defined
in (10) is holomorphic on C x B(0,0p). From now on, the parameter 9 is fixed and we consider
6 €(0,00/2) in such a way that the closed square 6(0,9) is included in the open ball B(0, ). This
will allow us to obtain some uniform bounds with respect to the radius &.
Applying the Taylor formula, we get:

M 6m m M+1 1 6M+1
8k < < M 8k
» - )O = 1_t ,t dt. 11
gk(w,2) mZ:O Gom (WO == fo( Y S (W 12) an

The (M + 1)-th partial derivative of g with respect to z is computed by using the Faa di Bruno
formula [5]. We introduce the notation:

Yik2u+v
re(2) = — _ZY,
k VZEI @ +v)!

so that the function gy reads:
V(w,2) €Cx B(0,80), gk(w,2)=exp(w? ' ri(2)).

We now consider (w, z) € C x €(0,6) and compute:

1 0M+lgk )
- = 223
(M+1)! 9zM+1 (10,2) = exp (W ri(2) (v)§4+1 v!

v
w2k vl (r,(f’(z)) ‘
’

where the notation v refers to a finitely supported integer valued sequence (vy,v»,...), and we
use the notation®:
=) vy, =) vy, vi=]]vel
(=1 (21 (=1

)
k

We now use uniform bounds for the derivatives r;”’ on the closed square ¢(0,6(/2), and we use

the bound:

sup |rr(2)l =Gy,
2€%(0,6)

where the constant C; is independent of § € (0,6/2). The crucial fact here is that r; vanishes at 0
so the uniform bound for 7y is at least linear with respect to 6. We end up with:

o M+lg,
V(w,z)eCx%(0,0), ‘—(w,z)

32+ = QUwhexp (C;51wl*H),

where Q is some real polynomial with nonnegative coefficients (that depend on M). Up to
choosing 6 small enough, we thus get the bound:

M+1
8k

aZM+l

VY (w,z) eCx%(0,0), ‘ (w, z)

< Cp exp (% (Re w)?H* + B* (Im w)?H* |,

for some suitable constant Cp; > 0. Using this bound in the Taylor formula (11) for g, we
eventually get the result of Lemma 7. g

5All these quantities make sense for finitely supported sequences as we consider here.
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From now on, we consider a given integer M € N. With the help of Lemma 7, we fix once and
for all aradius § > 0 and a constant C > 0 such that, for any k € {1,..., K}, the function g in (10) is
holomorphic on C x B(0,26) and satisfies the following bound:

Y (w,2) eCx6(0,5),

&L 9" g 2" M+1 B 2 * 2
gk(w,2)— ) Mm(mm;;scw| emf;ﬂ%w)W+ﬁamw)W, (12)
m=0 :

where f. and B* are the same constants as in (9). There is no loss of generality in assuming that
the K subsets {x e”|z € 6(0,0)} do not intersect one another (this amounts to choosing § small
enough since the points k. are pairwise distinct).

The final ingredient for proving Theorem 4 is the following observation.
Lemma 8. Let k € {1,...,K}, and let the polynomial Py ,, be defined by the asymptotic expan-
sion (5) for any m = 1. Let also the function gy be defined by (10). Then there holds:
w™ 0" gy
Vm=1, VYweC, Ppyulw)=——
' m! 0z™

Proof. The proof is rather straightforward since, by the definition (5), we have®:

1 o™
Pr,m(w) = (exp(z—yk’zukw wz“k”ZV)“

(w,0).

mlazm = @up+v)! Z=0
1 o™ w™ 0" gy
:%az_m(g’“(w’“’z))‘zzozﬁ 3o (WO O

Combining Lemma 8 and the Faa di Bruno formula, we obtain the same expression as in [13,
Chapter VII], that is:

Pem(X)=X" )" (13)

(Vy=m
For instance, we have for any k€ {1,...,K}:

X2V (Yk,zykw )W
v ao\Curt+0)!

Yk:2”k+l le«lk+1
Qur+1)!
and in the case Y2 ,+1 = 0, we have furthermore (see Section 4 for an example):

’

Pi1(X)=

Yk.2 Hi+2 X2 Ur+2

Pr2(X) =5 L +2)!

We now turn to the proof of Theorem 4.
3.2.2. Proof of Theorem 4

We warn the reader that many constants appear below. From now on, large positive constants
are always denoted C and small positive constants are denoted ¢, with the convention that
constants may be relabelled from one line to the other or within the same line. Constants may
depend on the integer M, that is given, but are always independent of z and #.

Based on the various constants that have been fixed in the previous paragraph, let us choose
some real number 0 such that exp(if) does not belong to any of the arcs {gkeig |16 € [-6,01} of the
unit circle (this is possible because these arcs do not intersect one another). We start from the
expression:

1 0+2n
a*l’l —

= — e MO F,(e'?)" do. (14)

21 Jo

6We feel free to skip the justification about the holomorphy of the considered functions on appropriate domains of
c2.
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We first split the integral in (14). For any k = 1,..., K, we consider 0} € R such that x; = exp(ify)
and 0 belongs to the open interval (8,6 +2m). Then the intervals [0} — §,0) + 8] are pairwise
disjoint and each of them is included in (8,8 +2 7). The important remark is that when 8 does not
belong to a segment of the form [0 — 8,0 + 6], then the factor F, (eie) in (14) belongs to the open
unit disk. Splitting the integral in (14) and using a continuity argument, there exists a positive

constant ¢ such that:
6k+

Z .3 e MO F, %) do| <e ", (15)
T JO~

uniformly with respect to ¢ and n. Performlng changes of variables in each integral on the left
hand side of (15) (just shift the interval in 8), we thus get:

k2 Fa(x,)" . .
Z Ky Falxg f omil0 (Fu(ﬁk)ilFa(Ekele))ndQ
5

<e ", (16)

We now use the holomorphy of 8 — Fa(x; el?) on €(0,5) together with the convergent power
series expansion (4). This modifies (16) accordingly into:

Z Ky Falcp)™ Fa("k) / e (n y Ve o) ) dl<em.  am
= v=2 g+l !
For ease of notation, we introduce the notation:
{—nay
Vk—].,...,K, Xk.—m. (18)

We change variables 8 — 0/n!/ ¥ in each integral on the left hand side of (17) to get:

*xn

—¢ n V)
K Fa(ﬁk) +on k
a; k f <e ", (19)

K Ta®i) 10 P O2H _i6
; PYSPS I e e 8k (19 1/(zu))d9

_snl/@ng)

where we have used the notation gy introduced in Lemma 7.

The final step of the proof consists in approximating gy by its Taylor expansion with respect
to its second argument (this is where Lemma 7 will be useful) and then by approximating the
integral on the large segment [-8n!/?#%), + 51/ 210 by the integral over R. Namely, by using the
triangle inequality, the preliminary estimate (19) yields’:

.y n i
o Z K Fa(xy) e ixk0 e_ﬁk(?z”k AZ/I" o)™ 0" 8k (i6,0)d6
¢ o 2nntCrY g =y mln™@r) gzm

—cn

1 2
se "T+lg, eyl (20)

where the error terms 6} n and 8? , are defined as follows:

K —¢ n +6 1@2pg)
1. Ky Falicy) f " e 1xk0 o= Pr Ok

o k:l—2nn1/(zuk)
. U M0 Mgk
x(gk(le, nl,&#k]) Zom'nm/(zﬂk) Som £, 0))d9 1)

_snVeup

-0
£ i LY Fa(Kk)nf
ln* = 2 nYCHE  Jry(—s nl/@rE) 15 pl @)
M (ig)m 6mgk
X

mZ:O m!n™ @) gzm

—i _ 2 g
e 1)(;(6e B 6

(i6,0)d6. (22)

7Recall that the integer M has been given since the previous paragraph.
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Estimate of the error terms. It is useful below to adopt the convention Pj((X) := 1 so that the
result of Lemma 8 holds not only for m € N* but for any integer m.

Let us start with the estimate of the error term &2 T defined in (22). We recall that both x; and
Fa(x ;) have modulus 1, and we apply Lemma 8 to 51mp11fy the integrand in (22). We obtain:

1

K
2
< e —
€7 nl = 1;1 mX::O 2 7 DI

2
f e~ RePO ¥ p,  (10)d6.
R\[—5}’ll/(zl'lk),‘i'(sﬂl/(z“k)]

Recalling that all the §;’s have positive real part and n = 1, we find that there exists a constant C

that is independent of n and ¢ such that there holds:

_ 2
7,41 =C Z e (RePL267 g,

R\[—6 nt/ @) 1.5 /€ ZW]
We thus obtain the exponential bound:
le7 < Ce™°", (23)

with positive constants C and ¢ that do not depend on ¢ and n.

It remains to obtain a bound for the first error term E}, " defined in (21). There holds:

K
|€} |< Z n—l/(Zuk)
nt

+8nt/Cup ,
e 1xk0 o =P 6%Fk
-5 nl/(Z/lk)

. Mo G0™  0"gk .
(gk (18’ nl/(zllk))_mzzom!nm/(zﬂk) gzm 10,0 [d0},

and we are now going to use a contour deformation (for each k) in order to derive a sharp bound
for ! ‘n (this is the reason why we have not used the triangle inequality in the integrals so far).

We consider an integer k € {1,...,K} and assume that x; in (18) is nonnegative (similar
arguments yield analogous bounds when Xr is negative, the contour depicted in Figure 1 below
has just to be switched to the upper half complex plane). We then define:

(24)

if —2k < §2Hk—1 Cre—DI2pg) |
4 p (25)
k= 52uk—1 5 @ue—1)/Q2 )

dup* = 0 n ’

’

( Xp )ll(Zyk—l)
4 p*

& V@), if

so that, in particular, there always holds:
Xk

Yuel0,Z], 0<2p*ut <
Z,Uk

(26)
and Z/n/@#) < §. Consequently, for any z on the contour that is depicted in blue in Figure 1, we
have max(|Re z|,|Im z|)/n'/?*¥) < § and we shall therefore be able to apply Cauchy’s formula for
holomorphic functions and also use the estimate of Lemma 7.
Namely, Cauchy’s formula gives:
+onteup efixkﬂefﬁkﬂz“k iy i0 ig)m 6mgk
_§nleup 8k " pl/@ur)

T 5o 10:0)| dO

é[\’li

11, .12 .3
=€/, FE T EL
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where E}l resp. € lz,corresponds to the integral on the left, resp. right, vertical segment, and &3 "

corresponds to the integral on the horizontal segment (see Figure 1). We omit the dependence
on k of each integral for the sake of simplicity.

_6n1/(2}lk) 0 6n1/(2/,lk)

1,1 1,2
‘/n oy Ei,n

- %%

Figure 1. The integration contour in the case x; = 0 (in blue). The bullets correspond to
the endpoints of the three segments that define the new contour. The initial contour is
depicted in black. Each new integral appears in red.

We start with the integrals on the vertical segments and compute:

. E . V@) _3 B (=5 nM@HE _3 2k
El'l :_lf e ixg(-6n 1u)e Br(=on iu)
0

‘.n

(-i6 nV/ M 1 1), 0)

u ) M (—ign!/CHO )™ g™mg,

s 1/(2 ) :
—-ibén +u,—id+ -
(8k ( nl/Cpo | = mipm e 0zm

We apply the triangle inequality, use the inequalities (9) and (12) to get:

= M+1
_ B 8%k = bkl .
Ieé’llsCe z " e MkuPTuR| g5y — du.
n A 1 @)
[ —
<Vv26

We then use (26) to get, for suitable positive constants C and ¢ that do not depend on xj nor on n:
= 2up—1
|£;'L| <Ce " f exp (—('uk—) Xi u) du.
' 0 i

Since xi is nonnegative and . = 1, we have:
ley | <CZe™",
but since Z is not larger than 6 n'/?#+), we end up with the exponential bound:
ley | <Ce™", 27)

for suitable constants C and ¢ that do not depend on ¢ and n. The estimate of the integral eé’zn

the right vertical segment is entirely similar. Going back to (20), we use the estimate (23) as well
as (27) in (24). We have thus obtained so far the estimate:

CFa(ic,)" . o M P (i) X
Z k a'lp e—lxkﬂe—ﬁkglﬂk Z k,m dol<ce "+ Z n—l/(Zuk) |€? [, (28)
k=1 27 R m=o N CH0 k=1 "

where we have used Lemma 8 to simplify the integral on the left hand side of (28) and we recall

that the notation 6‘2 , omits the index k for simplicity.
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It remains to compute and estimate the integral 5? ,, on the horizontal segment depicted on
Figure 1 (for each index k). We have:

+6 nt/@He) )
—i _iZ) - —iD)2H
E? _f e ix @ 1_)e B O-1E)Fk

n snll@up

. B-i= M @-iZ)™ 0™g; .
(gk(e"‘:’—nlfwk))_,,;om!nm/ww om0 —i5,0)| 0.

We use again the inequalities (9) and (12) to get:

5 ) +ontCH g o2k |0 —iZ|M+1
< —x. = * =2k -7 - =
leg ol < Cexp(-xx E+2p" 2 )[_5,11/(2#/& (M) 2 1) do.

With our choice for =, we obtain (see (26)):

M@ |3 | < C ex _(lek—l)x = oM+ 4 =M+ e—ﬁT*QZdeB
en! =P 2 e B ’

and this gives:
2up—1
pMEDICED |3 | < C(l + EM“) exp (——( Hie— 1) Xk E) . (29)
’ 2 k)

Let us go back to the definition of the parameter = and split the final argument between the
two possible regimes for x. In the first case of (25), we have

M+1)/2ux—1
x( +1)/2pe-1)

=M+l _Cue—1) ) k EpNCITAYCITeS)
(1+_ )exp( 200 X E|=(1+ C exp( cXx, )

<Cexp (—cx,(f”k)/(z”’c_l)) .
In the second case of (25), we have x; = = c n, and therefore:

(1 + EM“) exp (—M Xk E) < CpMDICY g=en < CemCn
2 i)

Whatever the value of xj, (29) thus gives:
€= ag nl| 7T
3 —cn _ — @ ni 2t

leg l=Ce ™"+ D2 OXP C( U Cug) ) ’

and (28) thus implies the estimate:

m=

K =t n M .
iy K Falkp)” [ ixo o-proome 5 Pem0) o
l & 2n nl/Cud) g ) nm! (2 pk)

2
/- Thp-1
| aknl) [ . G0)

K
< Ce_m +C —————— €X —C|——
k; L) 2 OXP ( PRYIEYT)

that holds for any ¢ € Z and n € N*. Note that we have not used the inequality |¢| < Ln to
derive (30).



1814 Jean-Frangois Coulombel and Grégory Faye

End of the proof. We start from (30) and use the properties of the Fourier transform to simplify
the left hand side into (recall the definition (3)):

K M i CFalic)" 5
Z Z n(m+1>/(2#) Prm(=d/dx)H,, (x)

10— ]\ Zo
— Tp-1
(Ikl’l) 193 , (31)

1
<=Ce "+CY ————exp|-c (—
gl L2 2 OXP PRYIEYT

where xj is defined in (18). The only (minor) task is to show that the exponentially small term
in n can be absorbed into the generalized Gaussian functions. Actually, we shall show that this
exponentially small term in 7 is lower than any of the terms in the sum on the right hand side
of (31) (for instance, the first term in the sum, which corresponds to k = 1). This is where the
assumption |¢| < Ln is crucial. Namely, we aim at showing that for a given constant ¢y > 0, there
exist positive constants C; and c; such that for |¢| < L n, there holds:

21
—aon C | —aq n|)2e-1
€ = maiem FP| TA | T uem ’

which follows from choosing C; such that:

_ _a
vn=1, pM/Cmg=n< e 2"

)

and then by choosing c; small enough such that, for |¢| < L n, there holds:

2w 2m
cill—ayn|?mT < En”l

The proof of Theorem 4 is now complete.

4. Consequences and examples
4.1. Large time asymptotics for finite difference schemes

In this Paragraph, we prove Corollary 5. We thus consider a sequence a that satisfies Assump-
tions 1 and 3, and consider an integer M € N. We recall, see [4], that for any f with positive real
part, the function H'Z6 u has super-exponential decay at infinity as well as its derivatives:

p B \(N) _las
VNeN, IC>0, VxeR, |H2p(x)|+ +|(H2H) (x)| = Cexp Clxlﬂ .

In Theorem 4, we can always choose the integer L such that L = 2 (1 + maxy |agl|), so that for
|¢| = Ln, there holds:
0
|6 —apn|= |2—|+n.

For |¢| = Ln, the bound of Theorem 4 on u;" and the above bound for Hﬁ and its derivatives
imply the error bound:

'K;[Fa(ﬁk)n B (f—akn Fa(Kk)n

K /-
*xn_\ Sk A=k _ Br \[£—- @k
a k; e 2 nl/(z,uk)) g . (m+1)/(2uk) (P’“""( d/dx)H )( )

20 )\ pl/@Cur

<=Cexp(-cn—-clf]), (32)
for |¢| = Ln.
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Let now u° € ¢P(Z;C) with 1 < p < +o0. Each convolution on the left hand side of (8) is well
defined and belongs to #” since it corresponds to the convolution on Z of an ¢! sequence with
u’ € ¢P. The conclusion of Corollary 5 follows from two observations. First of all, given any
constant ¢y > 0 and any integer i € N*, we have:

2y
" 1 | — apn|)2ne1
VneN*, Y] ZZexp (—co (—nl/(Zuk) ) <C,
(VA
for some appropriate constant C. Second, for any constant c¢; > 0, we also have:
Z exp(—c) (n+14])) < Cexp(—c n).
leZ
We then combine the bounds (7) and (32) with Young’s inequality to obtain the conclusion of

Corollary 5. We have thus obtained an accurate description of the large time asymptotics of the
iterated convolution a*" x u°. An example is detailed in the following paragraph.

4.2. A third order scheme for the transport equation

We report now on several calculations that can be made for the so-called O3 scheme, which
is a finite difference approximation of the transport equation. We refer to [8, 9, 19] for more
information about such high order compact approximations.

The O3 scheme corresponds to the finitely supported real valued sequence a = (ay)¢c7 that is

defined by:
A2-D)A-1) 2-1)1-21% A2-A)(1+A) A1-22)
a,=—F, QpP=—"T- ", q=—, —"—, hiI=——,
6 2 2 6
where A is areal parameter. All other values of a, are zero. Asreported in [7, 9], the corresponding
Fourier transform F, can be explicitly computed, and satisfies:

VEeER,

EJe“HZ:1—3342—Au1—1%sn#(§)@+4A(L—msn€(g”.

In particular, for A € (0, 1), Assumption 1 is satisfied and the second possibility in Lemma 2 occurs.
Furthermore, with the notation of Lemma 2, there holds K = 1 and x; = F,4(x;) = 1. Assuming
from now on that the parameter A lies in the open interval (0, 1), Assumption 3 is also satisfied
with: )
A2-1)1A-219)
a =421, ﬁl:T p1=2.
We now explain the calculation of the cumulants at x;, = 1 and apply Theorem 4 in that case.

We compute, as ¢ tends to zero:

_idé 1 A2-1)(1-22) i12-1)1-22)1-21)
e /lsFa(e s):l_ -1 64_ = 65
+/1(2—/1)(1—)LZ)(1—2)L+2/12) gr6+i}L(Z—)L)(l—/IZ)(l—z/l)(1—)L+ 1% ¢
144 504

+0(?),
which means that the power series expansion (4) holds at the point x;, = 1 with:
Y15=-2A2-0)1-2H1-21), 7y16=-512-1)1-1H(1-21+21?),

and
y17=-101(2-1) (1-A%) (1 -21) (1 - 1+ A?).
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Using the general formula (13) with m = 1,2, 3, we also compute:

_ Y15 45 _ Y6, L(Y15)2 po
PLY) = 220, Pran) = 2 vO e o (TR Y

and ) s
_ Y7 7 (Y18 (Y16 pa1, L7152 s
Pratl) = 7!Y7+(5!)(6!)Y +6(5!) v
Next, we recall that a is finitely supported so the estimate (7) holds not only for £ and nin a
large sector {|¢| < Ln} but for any (¢, n) € Z x N*. Specifying from now on to A = 1/2, Theorem 4
gives (with M = 3 in this case):

LHs,lzg(e—n/z) 1 (Hs,lzg)(G)(ﬁ—n/Z)‘S C (_ (w—n/m)‘“f‘

a," - +
[T nl/4 51273/4 U4 nl/4 nl/4

Here, we have used y1,5 = y1,7 = 0 with y; g = —45/32 so that P; ;(Y) = Py 3(Y) =0and P »(Y) =

- 5% Y5. Upon defining the sequence 2" = (%) ¢z from the above remainder term as

1 {—-nl2 1 ® (¢—n/2
R =al" - H3/128( n ) (H3/128) ( n )

—+
plia 4 nli4 512 73/4 U4 nl/4

for any (¢, n) € Z x N*, we show in Figure 2 the log plot of |2"| s~ and || 2", and recover the
respective scaling n7°'% and n~!. Furthermore, in Figure 3, we illustrate the generalized Gaussian
estimate of the remainder %} by showing for different time iterations that

|£—nuq“j

nS'*|#})| < Cexp (—c ( 7

with constants C = 0.09 and ¢ = 0.225.

-15

o logg [|R"[|e=
log HR"Hﬂ 1

1 175 é 2?5 3
logy(n)

Figure 2. Illustration of the scaling factor in the generalized asymptotic expansion pro-

vided by Theorem 4 in the case of the O3 scheme. We plot log;, 22" | ¢ (blue circles) and

log,, 122" | ;1 (orange circles) as a function of log, ,(n) together with a best linear fit for each

norm for 7 ranging from 1 to 103. For the #*° norm we find a slope of —1.2707 while for the

¢" norm we find a slope of —0.9887 which compare both well with the predicted —5/4 and
—1 scaling factors of Theorem 4.

Let us finally note that other examples originating from finite difference approximations of
the transport equation (Lax—Friedrichs scheme and so-called co scheme), with several tangency
points (K = 2), can be found in [7, Section 4], and for which the framework of Theorem 4 would
straightforwardly apply.
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Figure 3. Illustration of the rescaled remainder term 1n5'* | 2| (colored circles) at different
time iterations of the O3 scheme compared with a fixed generalized Gaussian profile
centered at £ = An (solid lines) with A = 1/2. The fixed generalized Gaussian profile is given

[¢—n/2|

4/3
by the sequence ¢ — Cexp (—c ( 7 ) ) with constants C = 0.09 and ¢ = 0.225.
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