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Abstract. We give a complete expansion, at any accuracy order, for the iterated convolution of a complex
valued integrable sequence in one space dimension. The remainders are estimated sharply with generalized
Gaussian bounds. The result applies in probability theory for random walks as well as in numerical analysis
for studying the large time behavior of numerical schemes.

Résumé. Nous donnons un développement asymptotique à tout ordre pour la convolution itérée d’une suite
complexe intégrable en une dimension d’espace. Les restes sont estimés de manière optimale avec une borne
Gaussienne généralisée. Le résultat s’applique tant en théorie des probabilités pour les marches aléatoires
qu’en analyse numérique pour le comportement en temps grand de schémas numériques aux différences
finies.
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1. Introduction

The local limit theorem in probability theory [13, Chapter VII] gives an asymptotic expansion of
the probability:

P(X1 +·· ·+Xn = j )

where X1, . . . , Xn , . . . are independent, identically distributed, random variables with values in
Z. Some versions of the local limit theorem even consider non identically distributed random
variables. Usually, the expansion is understood in the sense that the discrete time n becomes
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large, and one wishes to obtain remainders that are, at least, uniform with respect to the position
j ∈Z. The terms in the expansion correspond to increasing powers of n−1/2, and the leading term
in the expansion is a suitably scaled Gaussian function, as can be expected from the central limit
theorem. As a matter of fact, summing with respect to j the leading term in the expansion, we
expect to recover in the expression:

P(X1 +·· ·+Xn ≤ J ) =
J∑

j=−∞
P(X1 +·· ·+Xn = j )

an approximation by some kind of Riemann sum of the cumulative distribution function of a
normal distribution (evaluated at some well-chosen point).

When all random variables are assumed to be independent and identically distributed, the
probability P(X1+·· ·+Xn = j ) corresponds to the value at the index j of the iterated convolution
(n − 1)-times of the sequence (P(X1 = ℓ))ℓ∈Z with itself. Following, among others, the series of
works [4, 7, 8, 10, 11, 14–16, 21], we aim here at giving a complete asymptotic expansion of
such iterated convolutions without making any positivity assumption, that is by going beyond
the probabilistic framework. The article [10] gives a large overview of examples where this issue
is meaningful. As explained and evidenced in [15], dropping the positivity assumption yields a
much larger variety of possible behaviors that correspond, in the language of partial differential
equations, either to parabolic or dispersive behaviors. The present work focuses on the parabolic
case, which is the stable case in [21] (the case in which the iterated convolutions will be bounded
in the ℓ1 norm). The dispersive case will be dealt with in a subsequent work.

The results in the above mentioned references contained either technical restrictions on the
Fourier transform1 of the considered sequence or did not provide sharp enough estimates for
the remainders so that they could be used, e.g., to give error estimates for numerical analysis
purposes (see for instance Corollary 5 below). In this article, we drop all previous technical
restrictions and give an asymptotic expansion up to any order with a sharp, generalized Gaussian
estimate for the remainders. The latter estimates yield optimal large time decay estimates for
numerical schemes. An example of a third order finite difference approximation of the transport
equation is detailed in order to illustrate our main result.

Notation. In all this article, we let B(z,δ) denote the open disk in the complex plane {w ∈
C | |z − w | < δ} that is centered at z and has radius δ > 0. We also let C (z,δ) denote the open
square {w ∈ C | max(|Re(z −w)|, |Im(z −w)| < δ} in the complex plane that is centered at z and
whose side length equals 2δ. Eventually we let S1 denote the unit circle in C. Any other notation
is meant to be self-explanatory or is introduced in the core of the article.

2. Assumptions and main result

For any two complex valued sequences a = (aℓ)ℓ∈Z and b = (bℓ)ℓ∈Z such that the quantity below
makes sense, the convolution a⋆b of a and b is defined as:

a⋆b :=
( ∑
ℓ′∈Z

aℓ−ℓ′ bℓ′

)
ℓ∈Z

.

For instance, the celebrated Young’s inequality shows that, for a and b in the space of complex
valued integrable sequences ℓ1(Z;C), the convolution a ⋆b is well defined and also belongs to
ℓ1(Z;C), which endows this space with a Banach algebra structure. The goal of this article is
to study the geometric sequences (at least, some of them) in this algebra. In all this article, we
consider a fixed complex valued sequence a = (aℓ)ℓ∈Z and we make the following assumption.

1This function is referred to as the characteristic function in probability theory, see [13].
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Assumption 1. The sequence a = (aℓ)ℓ∈Z belongs to ℓ1(Z;C) and its associated Fourier series:

Fa : ζ ∈C 7−→ ∑
ℓ∈Z

aℓ ζ
ℓ ,

defines a holomorphic function on an annulus {ζ ∈C |1−ε< |ζ| < 1+ε} for some ε> 0. Furthermore,
there holds:

sup
κ∈S1

|Fa (κ)| = 1.

The latter normalization for the maximum of |Fa | on the unit circle is made in order to avoid
introducing additional terms in the main result below. In numerical analysis, this normalization
corresponds to the von Neumann stability condition [12]. Fixing the maximum to 1 can always
be achieved up to multiplying the considered sequence a by some positive number. Thanks to
Cauchy’s formula [18], the holomorphy of Fa on an annulus that contains the unit circle S1 is
equivalent to the existence of a positive constant c such that:

sup
ℓ∈Z

ec |ℓ| |aℓ| < +∞ . (1)

We now recall the following alternative that has already been proved in our former work [7] (see
also [2, p. 98]):

Lemma 2 ([7, Lemma A.1]). Let the sequence a satisfy Assumption 1. Then one of the following is
satisfied:

• Fa (κ) has modulus 1 for any κ ∈S1 (e.g., Fa is a Blaschke product [18]),
• there exists a finite set of pairwise distinct points {κ1, . . . ,κK }, K ≥ 1, inS1 such that Fa (κk )

has modulus 1 for any k ∈ {1, . . . ,K } and:

∀κ ∈S1 \
{
κ1, . . . ,κK

}
,

∣∣Fa (κ)
∣∣ < 1.

We explore in this article the behavior of the iterated convolutions a⋆ · · ·⋆a when a satisfies
Assumption 1 and also satisfies the second possibility in Lemma 2. We refer below to the Fa (κk )’s
as to tangency points since these are the points where the curve2 {Fa (κ) |κ ∈ S1} meets the unit
circleS1. The reader interested in the first case of Lemma 2 may consult [11] and [2, Theorem 3.1].
We shall make the following crucial assumption in what follows.

Assumption 3. The sequence a satisfies Assumption 1 and its Fourier series Fa satisfies the second
possibility in Lemma 2. Moreover, at any point κk ∈ S1, k ∈ {1, . . . ,K }, where the modulus of Fa

attains the value 1, there exists a real numberαk , a complex number βk with positive real part and
a nonzero integer µk ∈N∗ such that, as the complex number ξ tends to zero, there holds:

Fa

(
κk eiξ

)
= Fa (κk ) exp

(
iαk ξ−βk ξ

2µk +O(ξ2µk+1)
)

. (2)

Let us fix some more notation. First, the iterated convolution a⋆n is defined by a⋆1 := a and
for any n ∈N∗, a⋆(n+1) := a⋆n ⋆a, which corresponds to the geometric sequence associated with
a in the algebra ℓ1(Z;C). Then, following [15], for any nonzero integerµ ∈N∗ and for any complex
number β with positive real part, we introduce the function:

Hβ
2µ : x ∈R 7−→ 1

2π

∫
R

e−i x θ e−βθ
2µ

dθ . (3)

These functions (referred to as attractors in [15]) will play a major role in the asymptotic expan-
sions of this article. Some of their basic properties are recalled later on. We now try, as much as
possible, to stick to the notation in [13]. Using Assumptions 1 and 3, we consider a point κk ∈S1

2Because of Assumption 1, this curve is located inside the closed unit disk.
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at which Fa has modulus 1. Up to using the logarithm, for any sufficiently small ξ ∈ C, we can
write Fa (κk eiξ) as the convergent power series:

Fa

(
κk eiξ

)
= Fa (κk ) exp

(
iαk ξ−βk ξ

2µk + ∑
ν≥2µk+1

γk,ν

ν !
(iξ)ν

)
. (4)

The coefficients γk,ν play the role of cumulants in probability theory. Starting from the power
series expansion (4), we follow [13] and expand a power series in two variables (Y , Z ) as follows:

exp

(∑
ν≥1

γk,2µk+ν
(2µk +ν) !

Y 2µk+ν Z ν

)
= 1+ ∑

m≥1
Pk,m(Y ) Z m , (5)

where the Pk,m ’s are polynomials with complex coefficients that depend on the cumulants γk,ν

(see several formulas below based on the Faà di Bruno formula [5]). With the above notation, our
main result reads as follows.

Theorem 4. Let the sequence a satisfy Assumptions 1 and 3. Then there exist an integer L ∈ N∗

and some positive constant c0 > 0 such that for any n ∈N∗ and ℓ ∈Zwith |ℓ| > L n, there holds:∣∣a⋆n
ℓ

∣∣≤ exp(−c0 n − c0 |ℓ|) . (6)

Moreover, for any integer M ∈N, there exist some positive constants CM and cM (that depend on M
and a) such that the following holds: for any n ∈N∗ and ℓ ∈Zwith |ℓ| ≤ L n, there holds:∣∣∣∣∣a⋆n

ℓ −
K∑

k=1

κ−ℓk Fa (κk )n

n1/(2µk )
Hβk

2µk

(
ℓ−αk n

n1/(2µk )

)
−

K∑
k=1

M∑
m=1

κ−ℓk Fa (κk )n

n(m+1)/(2µk )

(
Pk,m(−d/dx)Hβk

2µk

)(
ℓ−αk n

n1/(2µk )

)∣∣∣∣∣
≤CM

K∑
k=1

1

n(M+2)/(2µk )
exp

−cM

( |ℓ−αk n|
n1/(2µk )

) 2µk
2µk−1

 , (7)

where the polynomials Pk,m are defined in (5).

Let us make several comments on Theorem 4. In probability theory, the sequence a is given
by aℓ = P(X1 = ℓ). It contains only non-negative real numbers that sum to 1. Assumption 1 is
therefore satisfied if and only if the aℓ’s satisfy a bound of the form (1) for some constant c > 0.
In that case, the first scenario in Lemma 2 is possible if and only if one single aℓ equals 1 and all
other are zero. This scenario corresponds to a deterministic random walk where, at each time
step, one makes a translation of a fixed number ℓ0 on the gridZ. Let us therefore assume that the
sequence a possesses at least two nonzero elements and that, for simplicity3, Fa has modulus 1
only at κ = 1 for κ ∈ S1. This corresponds to K = 1 in the notation of Assumption 3, with κ1 = 1
and Fa (κ1) = 1. Moreover, α1 is nothing but the mean of the random variable X1, µ1 = 1 and
2β1 =σ2

1 > 0 is the variance of X1. From the definition (3), we compute:

∀x ∈R , Hβ1
2 (x) = 1√

4πβ1
exp

(
− x2

4β1

)
.

The asymptotic expansion provided by Theorem 4 reads:

a⋆n
ℓ ∼ 1√

4πβ1n
exp

(
− (ℓ−α1n)2

4β1n

)
+ ∑

m≥1

1

n(m+1)/2

(
P1,m(−d/dx)Hβ1

2

)(
ℓ−α1np

n

)
.

It can be rewritten, as in [13, Chapter VII], in terms of Hermite polynomials by using the
properties of the Gaussian function (the so-called Rodrigues formula for Hermite polynomials,
see [20]). For instance, we shall see below that the polynomial P1,1 is given by:

P1,1(X ) = γ1,3

3!
X 3 ,

3Some rare cases yield K = 2, take for instance a−1 = a1 = 1/2.
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where γ1,3 is the cumulant of order 3 at the zero frequency, see (4). This means that the two first
terms (M = 1) in the expansion (7) are:

1√
4πβ1n

exp

(
− (ℓ−α1n)2

4β1n

)
− γ1,3

3!n

(
Hβ1

2

)′′′ (ℓ−α1np
n

)
,

and these two first terms can be rewritten as (recall the relation 2β1 =σ2
1):

1√
2πσ2

1n
exp

(
−x2

2

)
− γ1,3

3!σ4
1 n

(x3 −3x)
1p
2π

exp

(
−x2

2

)
, with x := ℓ−α1 n

σ1
p

n
,

which coincides with the expression in [13, Theorem 13, p. 205]. If we compare Theorem 4 above
with [13, Chapter VII], the novelty is the (sharp) estimate of the remainder with a Gaussian bound
rather than a uniform bound as o(n−(M+1)/2) or O(n−(M+2)/2) which would not allow to obtain
error bounds such as (8) in Corollary 5 below. The price to pay is the holomorphy condition on
Fa in Assumption 1.

One can also try to compare Theorem 4 with the well-known stability results derived in [21],
see also [2, Chapter 5], for finite difference schemes. Actually, the article [21] is the fundamental
reference where the condition (2) on the Fourier transform Fa was first highlighted. The emphasis
in [21] or [2] was rather on deriving stability bounds on the iterated convolution operator
u 7→ a⋆n ⋆u. These bounds are used in [2] to derive convergence estimates, mostly on finite
time intervals. Our goal here is slightly different since we rather aim at studying the large time
behavior of the iterated convolution operator which could open the possibility of studying large
time convergence estimates.

An immediate corollary of Theorem 4 is the following result which gives an accurate descrip-
tion of the large time behavior of the iterated convolution a⋆n ⋆ u0 for any initial condition
u0 ∈ ℓp (Z;C). Corollary 5 below yields an explicit expression for the large time asymptotics of
a finite difference scheme corresponding to the convolution with a sequence a that satisfies both
Assumptions 1 and 3. It can be used to justify in a sharp quantitative way the link between a
numerical scheme and its associated modified equation.

Corollary 5. Let the sequence a satisfy Assumptions 1 and 3. Then for any integer M ∈ N, there
exists a constant CM > 0 such that for any sequence u0 ∈ ℓp (Z;C) with 1 ≤ p ≤ +∞ and for any
n ∈N∗, there holds:∥∥∥∥∥a⋆n ⋆u0 −

K∑
k=1

κ−ℓk Fa (κk )n

n1/(2µk )
Hβk

2µk

( ·−αk n

n1/(2µk )

)
⋆u0

−
M∑

m=1

K∑
k=1

κ−ℓk Fa (κk )n

n(m+1)/(2µk )

(
Pk,m(−d/dx)Hβk

2µk

)( ·−αk n

n1/(2µk )

)
⋆u0

∥∥∥∥∥
ℓp

≤ CM ∥u0∥ℓp

n(M+1)/(2µ)
, (8)

with µ := maxk µk .

Some analogues of Theorem 4 are proved in [4, 14–16], sometimes with restrictions on K
(number of tangency points) and/or on the drifts αk , and/or on M (number of terms in the
asymptotic expansion). As far as we know, our framework seems to be the most general so far.
Our only (crucial!) assumption is the fact that Fa has an expansion of the form (2) at every
tangency point. According to the main result in [21], this corresponds to a stable situation where
the geometric sequence (a⋆n)n∈N∗ is bounded in ℓ1(Z;C). From the point of view of partial
differential equations, the above asymptotic expansion involves the fundamental solution of
some parabolic equation.

Other forms for the expansion (2) would lead to dispersive behaviors, a prototype of which
(the so-called Lax–Wendroff scheme, see [1]) is studied in depth in [6]. In the dispersive case,
the geometric sequence (a⋆n)n∈N∗ is no longer bounded in ℓ1(Z;C). The reference [1, Chapter 5]
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provides with several comparisons for the Green’s function in this case but a complete derivation
of a large time expansion with sharp bounds is still missing. We shall deal with the local
limit theorem (up to any order) in the dispersive case in a subsequent work. Another very
interesting perspective would be to derive analogues of Theorem 4 in the multi-dimensional
setting where the sequence a is now indexed on the d-dimensional lattice Zd , with d ≥ 2. We
refer to [3, 14, 16, 17] for recent developments on the subject. Let us emphasize that the multi-
dimensional setting presents a much richer classification of the tangency points compared to
the one-dimensional case which has only two cases4. Borrowing the terminology used in the
aforementioned references, the multi-dimensional analogue of the parabolic case studied here
would correspond to the case where all tangency points of Fa are of positive homogeneous type,
see [16, Definition 1.3.].

When the sequence a has finite support, the bound (7) holds true not only in a large sector
{|ℓ| ≤ L n} but for any ℓ ∈ Z (see [4]). The statement of Theorem 4 in that case is therefore more
simple since one obtains a global bound for the error between a⋆n

ℓ
and its asymptotic expansion.

In the general case of a holomorphic Fa , the decay of a⋆n
ℓ

at infinity (for a fixed n) is at best
exponential which makes the distinction of the two regimes in Theorem 4 relevant. Several
applications of Theorem 4 are given below in Section 4. We now give the proof of Theorem 4.

3. Proof of Theorem 4

Theorem 4 will ultimately justify that the iterated convolution a⋆n
ℓ

is mostly concentrated around
the K sectors ∪k {(ℓ,n) |ℓ∼αk n}, meaning in particular that a⋆n

ℓ
is to some extent negligible for

|ℓ| ≫ n. We therefore first study this far field regime where (ℓ,n) is outside a large enough sector
and then turn to the main purpose of this work which is the proof of (7).

3.1. The far field regime

We first consider the case where the ratio |ℓ|/n is large. We start from the expression:

a⋆n
ℓ = 1

2π

∫ π

−π
e−iℓθ Fa (eiθ)n dθ ,

and use the fact that the function Fa has a holomorphic extension on an annulus around S1. Let
us assume ℓ> 0 and let us change the integration contour by using the Cauchy formula. Choosing
for instance δ := ln(1+ε/2), with ε> 0 given by Assumption 1, we obtain:

a⋆n
ℓ = 1

2π

∫ π

−π
e−ℓδe−iℓθ Fa (ei (θ−iδ))n dθ .

Applying the triangle inequality, we thus get the bound:

|a⋆n
ℓ | ≤ e−ℓδ

(
sup

θ∈[−π,π]
|Fa (eδ eiθ)|

)n

,

meaning that for some well-chosen constant C♭ > 0 that does not depend on ℓ and n, there holds:

|a⋆n
ℓ | ≤ exp

(
−δℓ+C♭n

)
,

as long as n ∈N∗ and ℓ≥ 0. For ℓ≥ (2C♭/δ)n, we thus have:

|a⋆n
ℓ | ≤ exp

(
−δ

2
ℓ

)
≤ exp

(
−δ

4
ℓ− C♭

2
n

)
.

4The two cases are the parabolic case, as studied here, and the dispersive case, as addressed in [2, 6, 11, 15, 21].
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We have thus proved the validity of (6) for ℓ≥ L n and L > 0 is a well-chosen constant (there is no
loss of generality in assuming that L is an integer up to increasing L). The case ℓ < 0 is entirely
similar and is left to the interested reader.

From now on, the integer L of Theorem 4 is fixed as above, and we shall always assume that
ℓ ∈Z is restricted to those values for which |ℓ| ≤ L n, with n ∈N∗ the discrete time.

3.2. The local limit theorem

3.2.1. Fixing the constants

The aim of this paragraph is to fix several constants that will arise in various estimates for
proving Theorem 4. We start with the following simple observation.

Lemma 6. Let β ∈C have positive real part and let µ ∈N∗. Then there exists a constant C > 0 such
that for any u ∈C, there holds:

Re(βu2µ) ≥ Reβ

2
(Reu)2µ−C (Imu)2µ .

Proof. The proof simply consists in expanding:

Re(βu2µ) = (Reβ) (Reu2µ)− (Imβ) (Imu2µ) ,

and then in expanding both the real and imaginary parts of u2µ. Writing u = x + i y , we obtain:

Re(βu2µ) = (Reβ) x2µ+ (Reβ)
µ∑

m=1

(
2µ

2m

)
(−1)m x2(µ−m) y2m

− (Imβ)
µ−1∑
m=0

(
2µ

2m +1

)
(−1)m x2(µ−m)−1 y2m+1 .

By repeatedly using Holder’s and Young’s inequalities, we can obtain the estimate:∣∣∣∣∣(Reβ)
µ∑

m=1

(
2µ

2m

)
(−1)m x2(µ−m) y2m − (Imβ)

µ−1∑
m=0

(
2µ

2m +1

)
(−1)m x2(µ−m)−1 y2m+1

∣∣∣∣∣
≤ Reβ

2
x2µ+C y2µ ,

with a large enough constant C (that does not depend on x and y). This gives the result of
Lemma 6. □

Using Assumption 3 and Lemma 6, we can fix once and for all two constantsβ∗ > 0 andβ∗ ≥β∗
such that the following inequalities hold true:

∀k = 1, . . . ,K , ∀u ∈C , Re(βk u2µk ) ≥β∗ (Reu)2µk −β∗ (Imu)2µk . (9)

These inequalities will be helpful later on. We now prove another useful preliminary result.

Lemma 7. Let k ∈ {1, . . . ,K }, and let the coefficients γk,ν be defined in (4) for ν ≥ 2µk + 1. Then
there exists δ0 > 0 such that the function:

gk : (w, z) ∈C×B(0,δ0) 7−→ exp

(
w2µk

∑
ν≥1

γk,2µk+ν
(2µk +ν) !

zν
)

, (10)

is holomorphic on C×B(0,δ0). Furthermore, for any M ∈N, there exists a constant C =C (k, M) > 0
and some δ ∈ (0,δ0) such that there holds:

∀ (w, z)∈C×C (0,δ) ,

∣∣∣∣∣gk (w, z)−
M∑

m=0

∂m gk

∂zm (w,0)
zm

m !

∣∣∣∣∣≤C |z|M+1 exp

(
β∗
2

(Re w)2µk +β∗ (Im w)2µk

)
,

where β∗ and β∗ are the constants in (9).
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Proof. Since Fa is holomorphic on an annulus {ζ ∈C |1−ε< |ζ| < 1+ε}, for some ε> 0, the power
series (in Z ): ∑

ν≥2µk+1

γk,ν

ν !
Z ν ,

has a positive convergence radius. This implies that for some δ0 > 0, the function gk defined
in (10) is holomorphic on C×B(0,δ0). From now on, the parameter δ0 is fixed and we consider
δ ∈ (0,δ0/2) in such a way that the closed square C (0,δ) is included in the open ball B(0,δ0). This
will allow us to obtain some uniform bounds with respect to the radius δ.

Applying the Taylor formula, we get:

gk (w, z)−
M∑

m=0

∂m gk

∂zm (w,0)
zm

m !
= zM+1

M !

∫ 1

0
(1− t )M ∂M+1gk

∂zM+1
(w, t z)dt . (11)

The (M + 1)-th partial derivative of gk with respect to z is computed by using the Faà di Bruno
formula [5]. We introduce the notation:

rk (z) := ∑
ν≥1

γk,2µk+ν
(2µk +ν) !

zν ,

so that the function gk reads:

∀ (w, z) ∈C×B(0,δ0) , gk (w, z) = exp
(
w2µk rk (z)

)
.

We now consider (w, z) ∈C×C (0,δ) and compute:

1

(M +1) !

∂M+1gk

∂zM+1
(w, z) = exp

(
w2µk rk (z)

) ∑
〈ν〉=M+1

w2µk |ν|

ν !

∏
ℓ≥1

(
r (ℓ)

k (z)

ℓ !

)νℓ
,

where the notation ν refers to a finitely supported integer valued sequence (ν1,ν2, . . . ), and we
use the notation5:

〈ν〉 := ∑
ℓ≥1

ℓνℓ , |ν| := ∑
ℓ≥1

νℓ , ν ! := ∏
ℓ≥1

νℓ ! .

We now use uniform bounds for the derivatives r (ℓ)
k on the closed square C (0,δ0/2), and we use

the bound:

sup
z∈C (0,δ)

|rk (z)| ≤C♯δ ,

where the constant C♯ is independent of δ ∈ (0,δ0/2). The crucial fact here is that rk vanishes at 0
so the uniform bound for rk is at least linear with respect to δ. We end up with:

∀ (w, z) ∈C×C (0,δ) ,

∣∣∣∣ ∂M+1gk

∂zM+1
(w, z)

∣∣∣∣≤Q(|w |)exp
(
C♯δ |w |2µk

)
,

where Q is some real polynomial with nonnegative coefficients (that depend on M). Up to
choosing δ small enough, we thus get the bound:

∀ (w, z) ∈C×C (0,δ) ,

∣∣∣∣ ∂M+1gk

∂zM+1
(w, z)

∣∣∣∣≤CM exp

(
β∗
2

(Re w)2µk +β∗ (Im w)2µk

)
,

for some suitable constant CM > 0. Using this bound in the Taylor formula (11) for gk , we
eventually get the result of Lemma 7. □

5All these quantities make sense for finitely supported sequences as we consider here.
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From now on, we consider a given integer M ∈N. With the help of Lemma 7, we fix once and
for all a radius δ> 0 and a constant C > 0 such that, for any k ∈ {1, . . . ,K }, the function gk in (10) is
holomorphic on C×B(0,2δ) and satisfies the following bound:

∀ (w, z) ∈C×C (0,δ) ,∣∣∣∣∣gk (w, z)−
M∑

m=0

∂m gk

∂zm (w,0)
zm

m !

∣∣∣∣∣≤C |z|M+1 exp

(
β∗
2

(Re w)2µk +β∗ (Im w)2µk

)
, (12)

where β∗ and β∗ are the same constants as in (9). There is no loss of generality in assuming that
the K subsets {κk ez |z ∈C (0,δ)} do not intersect one another (this amounts to choosing δ small
enough since the points κk are pairwise distinct).

The final ingredient for proving Theorem 4 is the following observation.

Lemma 8. Let k ∈ {1, . . . ,K }, and let the polynomial Pk,m be defined by the asymptotic expan-
sion (5) for any m ≥ 1. Let also the function gk be defined by (10). Then there holds:

∀m ≥ 1, ∀w ∈C , Pk,m(w) = wm

m !

∂m gk

∂zm (w,0) .

Proof. The proof is rather straightforward since, by the definition (5), we have6:

Pk,m(w) = 1

m !

∂m

∂Z m

(
exp

(∑
ν≥1

γk,2µk+ν
(2µk +ν) !

w2µk+ν Z ν

))∣∣∣
Z=0

= 1

m !

∂m

∂Z m

(
gk (w, w Z )

)∣∣∣
Z=0

= wm

m !

∂m gk

∂zm (w,0) . □

Combining Lemma 8 and the Faà di Bruno formula, we obtain the same expression as in [13,
Chapter VII], that is:

Pk,m(X ) = X m
∑

〈ν〉=m

X 2µk |ν|

ν !

∏
ℓ≥1

(
γk,2µk+ℓ

(2µk +ℓ) !

)νℓ
. (13)

For instance, we have for any k ∈ {1, . . . ,K }:

Pk,1(X ) = γk,2µk+1

(2µk +1) !
X 2µk+1 ,

and in the case γk,2µk+1 = 0, we have furthermore (see Section 4 for an example):

Pk,2(X ) = γk,2µk+2

(2µk +2) !
X 2µk+2 ,

We now turn to the proof of Theorem 4.

3.2.2. Proof of Theorem 4

We warn the reader that many constants appear below. From now on, large positive constants
are always denoted C and small positive constants are denoted c, with the convention that
constants may be relabelled from one line to the other or within the same line. Constants may
depend on the integer M , that is given, but are always independent of n and ℓ.

Based on the various constants that have been fixed in the previous paragraph, let us choose
some real number θ such that exp(iθ) does not belong to any of the arcs {κk eiθ |θ ∈ [−δ,δ]} of the
unit circle (this is possible because these arcs do not intersect one another). We start from the
expression:

a⋆n
ℓ = 1

2π

∫ θ+2π

θ
e−iℓθ Fa (eiθ)n dθ . (14)

6We feel free to skip the justification about the holomorphy of the considered functions on appropriate domains of
C2.
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We first split the integral in (14). For any k = 1, . . . ,K , we consider θk ∈ R such that κk = exp(iθk )
and θk belongs to the open interval (θ,θ+ 2π). Then the intervals [θk −δ,θk +δ] are pairwise
disjoint and each of them is included in (θ,θ+2π). The important remark is that when θ does not
belong to a segment of the form [θk −δ,θk +δ], then the factor Fa (eiθ) in (14) belongs to the open
unit disk. Splitting the integral in (14) and using a continuity argument, there exists a positive
constant c such that: ∣∣∣∣∣a⋆n

ℓ −
K∑

k=1

1

2π

∫ θk+δ

θk−δ
e−iℓθ Fa (eiθ)n dθ

∣∣∣∣∣≤ e−c n , (15)

uniformly with respect to ℓ and n. Performing changes of variables in each integral on the left
hand side of (15) (just shift the interval in θ), we thus get:∣∣∣∣∣a⋆n

ℓ −
K∑

k=1

κ−ℓk Fa (κk )n

2π

∫ +δ

−δ
e−iℓθ

(
Fa (κk )−1 Fa (κk eiθ)

)n
dθ

∣∣∣∣∣≤ e−c n . (16)

We now use the holomorphy of θ 7→ Fa (κk eiθ) on C (0,δ) together with the convergent power
series expansion (4). This modifies (16) accordingly into:∣∣∣∣∣a⋆n

ℓ −
K∑

k=1

κ−ℓk Fa (κk )n

2π

∫ +δ

−δ
e−i(ℓ−nαk )θ e−nβkθ

2µk exp

(
n

∑
ν≥2µk+1

γk,ν

ν !
(iθ)ν

)
dθ

∣∣∣∣∣≤ e−c n . (17)

For ease of notation, we introduce the notation:

∀k = 1, . . . ,K , xk := ℓ−nαk

n1/(2µk )
. (18)

We change variables θ→ θ/n1/(2µk ) in each integral on the left hand side of (17) to get:∣∣∣∣∣a⋆n
ℓ −

K∑
k=1

κ−ℓk Fa (κk )n

2πn1/(2µk )

∫ +δn1/(2µk )

−δn1/(2µk )
e−i xk θ e−βk θ

2µk gk

(
iθ,

iθ

n1/(2µk )

)
dθ

∣∣∣∣∣≤ e−c n , (19)

where we have used the notation gk introduced in Lemma 7.

The final step of the proof consists in approximating gk by its Taylor expansion with respect
to its second argument (this is where Lemma 7 will be useful) and then by approximating the
integral on the large segment [−δn1/(2µk ),+δn1/(2µk )] by the integral over R. Namely, by using the
triangle inequality, the preliminary estimate (19) yields7:∣∣∣∣∣a⋆n

ℓ −
K∑

k=1

κ−ℓk Fa (κk )n

2πn1/(2µk )

∫
R

e−i xk θ e−βk θ
2µk

M∑
m=0

(iθ)m

m !nm/(2µk )

∂m gk

∂zm (iθ,0)dθ

∣∣∣∣∣
≤ e−c n +|ε1

ℓ,n |+ |ε2
ℓ,n | , (20)

where the error terms ε1
ℓ,n and ε2

ℓ,n are defined as follows:

ε1
ℓ,n :=

K∑
k=1

κ−ℓk Fa (κk )n

2πn1/(2µk )

∫ +δn1/(2µk )

−δn1/(2µk )
e−i xk θe−βk θ

2µk

×
(

gk

(
iθ,

iθ

n1/(2µk )

)
−

M∑
m=0

(iθ)m

m !nm/(2µk )

∂m gk

∂zm (iθ,0)

)
dθ, (21)

ε2
ℓ,n :=

K∑
k=1

κ−ℓk Fa (κk )n

2πn1/(2µk )

∫
R\[−δn1/(2µk ),+δn1/(2µk )]

e−i xk θ e−βk θ
2µk

×
M∑

m=0

(iθ)m

m !nm/(2µk )

∂m gk

∂zm (iθ,0)dθ . (22)

7Recall that the integer M has been given since the previous paragraph.
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Estimate of the error terms. It is useful below to adopt the convention Pk,0(X ) := 1 so that the
result of Lemma 8 holds not only for m ∈N∗ but for any integer m.

Let us start with the estimate of the error term ε2
ℓ,n defined in (22). We recall that both κk and

Fa (κk ) have modulus 1, and we apply Lemma 8 to simplify the integrand in (22). We obtain:

|ε2
ℓ,n | ≤

K∑
k=1

M∑
m=0

1

2πn(m+1)/(2µk )

∫
R\[−δn1/(2µk ),+δn1/(2µk )]

e−(Reβk )θ2µk |Pk,m(iθ)|dθ .

Recalling that all the βk ’s have positive real part and n ≥ 1, we find that there exists a constant C
that is independent of n and ℓ such that there holds:

|ε2
ℓ,n | ≤C

K∑
k=1

∫
R\[−δn1/(2µk ),+δn1/(2µk )]

e−(Reβk /2)θ2µk dθ .

We thus obtain the exponential bound:

|ε2
ℓ,n | ≤C e−c n , (23)

with positive constants C and c that do not depend on ℓ and n.

It remains to obtain a bound for the first error term ε1
ℓ,n defined in (21). There holds:

|ε1
ℓ,n | ≤

K∑
k=1

n−1/(2µk )

∣∣∣∣∣
∫ +δn1/(2µk )

−δn1/(2µk )
e−i xk θ e−βk θ

2µk

(
gk

(
iθ,

iθ

n1/(2µk )

)
−

M∑
m=0

(iθ)m

m !nm/(2µk )

∂m gk

∂zm (iθ,0)

)
dθ

∣∣∣∣∣ , (24)

and we are now going to use a contour deformation (for each k) in order to derive a sharp bound
for ε1

ℓ,n (this is the reason why we have not used the triangle inequality in the integrals so far).
We consider an integer k ∈ {1, . . . ,K } and assume that xk in (18) is nonnegative (similar

arguments yield analogous bounds when xk is negative, the contour depicted in Figure 1 below
has just to be switched to the upper half complex plane). We then define:

Ξ :=


(
xk

4µk β
∗
)1/(2µk−1)

, if xk
4µk β

∗ ≤ δ2µk−1 n(2µk−1)/(2µk ) ,

δn1/(2µk ) , if xk
4µk β

∗ ≥ δ2µk−1 n(2µk−1)/(2µk ) ,
(25)

so that, in particular, there always holds:

∀u ∈ [0,Ξ] , 0 ≤ 2β∗ u2µk−1 ≤ xk

2µk
, (26)

andΞ/n1/(2µk ) ≤ δ. Consequently, for any z on the contour that is depicted in blue in Figure 1, we
have max(|Re z|, |Im z|)/n1/(2µk ) ≤ δ and we shall therefore be able to apply Cauchy’s formula for
holomorphic functions and also use the estimate of Lemma 7.

Namely, Cauchy’s formula gives:

∫ +δn1/(2µk )

−δn1/(2µk )
e−i xk θ e−βk θ

2µk

(
gk

(
iθ,

iθ

n1/(2µk )

)
−

M∑
m=0

(iθ)m

m !nm/(2µk )

∂m gk

∂zm (iθ,0)

)
dθ

= ε1,1
ℓ,n +ε1,2

ℓ,n +ε3
ℓ,n ,
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where ε1,1
ℓ,n , resp. ε1,2

ℓ,n , corresponds to the integral on the left, resp. right, vertical segment, and ε3
ℓ,n

corresponds to the integral on the horizontal segment (see Figure 1). We omit the dependence
on k of each integral for the sake of simplicity.

−δn1/(2µk ) δn1/(2µk )0

ε1,1
ℓ,n ε1,2

ℓ,n

ε3
ℓ,n

−iΞ

C

• •

• •

Figure 1. The integration contour in the case xk ≥ 0 (in blue). The bullets correspond to
the endpoints of the three segments that define the new contour. The initial contour is
depicted in black. Each new integral appears in red.

We start with the integrals on the vertical segments and compute:

ε1,1
ℓ,n =−i

∫ Ξ

0
e−i xk (−δn1/(2µk )−iu) e−βk (−δn1/(2µk )−iu)2µk(

gk

(
−iδn1/(2µk ) +u,−iδ+ u

n1/(2µk )

)
−

M∑
m=0

(−iδn1/(2µk ) +u)m

m !nm/(2µk )

∂m gk

∂zm (−iδn1/(2µk ) +u),0)

)
du .

We apply the triangle inequality, use the inequalities (9) and (12) to get:

|ε1,1
ℓ,n | ≤C e−

β∗ δ2µk
2 n

∫ Ξ

0
e−xk u e2β∗ u2µk

∣∣∣∣−iδ+ u

n1/(2µk )

∣∣∣∣︸ ︷︷ ︸
≤p2δ

M+1

du .

We then use (26) to get, for suitable positive constants C and c that do not depend on xk nor on n:

|ε1,1
ℓ,n | ≤C e−c n

∫ Ξ

0
exp

(
− (2µk −1)

2µk
xk u

)
du .

Since xk is nonnegative and µk ≥ 1, we have:

|ε1,1
ℓ,n | ≤C Ξe−c n ,

but since Ξ is not larger than δn1/(2µk ), we end up with the exponential bound:

|ε1,1
ℓ,n | ≤C e−c n , (27)

for suitable constants C and c that do not depend on ℓ and n. The estimate of the integral ε1,2
ℓ,n on

the right vertical segment is entirely similar. Going back to (20), we use the estimate (23) as well
as (27) in (24). We have thus obtained so far the estimate:∣∣∣∣∣a⋆n

ℓ −
K∑

k=1

κ−ℓk Fa (κk )n

2π

∫
R

e−i xk θ e−βk θ
2µk

M∑
m=0

Pk,m(iθ)

nm/(2µk )
dθ

∣∣∣∣∣≤C e−c n +
K∑

k=1
n−1/(2µk ) |ε3

ℓ,n | , (28)

where we have used Lemma 8 to simplify the integral on the left hand side of (28) and we recall
that the notation ε3

ℓ,n omits the index k for simplicity.
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It remains to compute and estimate the integral ε3
ℓ,n on the horizontal segment depicted on

Figure 1 (for each index k). We have:

ε3
ℓ,n =

∫ +δn1/(2µk )

−δn1/(2µk )
e−i xk (θ−iΞ) e−βk (θ−iΞ)2µk(

gk

(
θ− iΞ,

θ− iΞ

n1/(2µk )

)
−

M∑
m=0

(θ− iΞ)m

m !nm/(2µk )

∂m gk

∂zm (θ− iΞ,0)

)
dθ .

We use again the inequalities (9) and (12) to get:

|ε3
ℓ,n | ≤C exp

(−xk Ξ+2β∗Ξ2µk
) ∫ +δn1/(2µk )

−δn1/(2µk )
e−

β∗
2 θ2µk |θ− iΞ|M+1

n(M+1)/(2µk )
dθ .

With our choice for Ξ, we obtain (see (26)):

n(M+1)/(2µk ) |ε3
ℓ,n | ≤C exp

(
− (2µk −1)

2µk )
xk Ξ

) ∫
R

(
|θ|M+1 +ΞM+1

)
e−

β∗
2 θ2µk dθ ,

and this gives:

n(M+1)/(2µk ) |ε3
ℓ,n | ≤C

(
1+ΞM+1

)
exp

(
− (2µk −1)

2µk )
xk Ξ

)
. (29)

Let us go back to the definition of the parameter Ξ and split the final argument between the
two possible regimes for xk . In the first case of (25), we have

(
1+ΞM+1

)
exp

(
− (2µk −1)

2µk )
xk Ξ

)
=

(
1+

x(M+1)/(2µk−1)
k

C

)
exp

(
−c x(2µk )/(2µk−1)

k

)
≤C exp

(
−c x(2µk )/(2µk−1)

k

)
.

In the second case of (25), we have xk Ξ≥ c n, and therefore:(
1+ΞM+1

)
exp

(
− (2µk −1)

2µk )
xk Ξ

)
≤C n(M+1)/(2µk ) e−c n ≤C e−c n .

Whatever the value of xk , (29) thus gives:

|ε3
ℓ,n | ≤C e−c n + C

n(M+1)/(2µk )
exp

−c

( |ℓ−αk n|
n1/(2µk )

) 2µk
2µk−1

 ,

and (28) thus implies the estimate:∣∣∣∣∣a⋆n
ℓ −

K∑
k=1

κ−ℓk Fa (κk )n

2πn1/(2µk )

∫
R

e−i xk θ e−βk θ
2µk

M∑
m=0

Pk,m(iθ)

nm/(2µk )
dθ

∣∣∣∣∣
≤C e−c n +C

K∑
k=1

1

n(M+2)/(2µk )
exp

−c

( |ℓ−αk n|
n1/(2µk )

) 2µk
2µk−1

 , (30)

that holds for any ℓ ∈ Z and n ∈ N∗. Note that we have not used the inequality |ℓ| ≤ L n to
derive (30).
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End of the proof. We start from (30) and use the properties of the Fourier transform to simplify
the left hand side into (recall the definition (3)):∣∣∣∣∣a⋆n

ℓ −
K∑

k=1

M∑
m=0

κ−ℓk Fa (κk )n

n(m+1)/(2µk )
Pk,m(−d/dx)Hβk

2µk
(xk )

∣∣∣∣∣
≤C e−c n +C

K∑
k=1

1

n(M+2)/(2µk )
exp

−c

( |ℓ−αk n|
n1/(2µk )

) 2µk
2µk−1

 , (31)

where xk is defined in (18). The only (minor) task is to show that the exponentially small term
in n can be absorbed into the generalized Gaussian functions. Actually, we shall show that this
exponentially small term in n is lower than any of the terms in the sum on the right hand side
of (31) (for instance, the first term in the sum, which corresponds to k = 1). This is where the
assumption |ℓ| ≤ L n is crucial. Namely, we aim at showing that for a given constant c0 > 0, there
exist positive constants C1 and c1 such that for |ℓ| ≤ L n, there holds:

e−c0 n ≤ C1

n(M+2)/(2µ1)
exp

(
−c1

( |ℓ−α1 n|
n1/(2µ1)

) 2µ1
2µ1−1

)
,

which follows from choosing C1 such that:

∀n ≥ 1, n(M+2)/(2µ1) e−c0 n ≤C1 e−
c0
2 n ,

and then by choosing c1 small enough such that, for |ℓ| ≤ L n, there holds:

c1 |ℓ−α1 n|
2µ1

2µ1−1 ≤ c0

2
n

2µ1
2µ1−1 .

The proof of Theorem 4 is now complete.

4. Consequences and examples

4.1. Large time asymptotics for finite difference schemes

In this Paragraph, we prove Corollary 5. We thus consider a sequence a that satisfies Assump-
tions 1 and 3, and consider an integer M ∈N. We recall, see [4], that for any β with positive real
part, the function Hβ

2µ has super-exponential decay at infinity as well as its derivatives:

∀N ∈N , ∃C > 0, ∀x ∈R , |Hβ
2µ(x)|+ · · ·+ |(Hβ

2µ)(N )(x)| ≤C exp

(
− 1

C
|x|

2µ
2µ−1

)
.

In Theorem 4, we can always choose the integer L such that L ≥ 2(1 + maxk |αk |), so that for
|ℓ| ≥ L n, there holds:

|ℓ−αk n| ≥ |ℓ|
2

+n .

For |ℓ| ≥ L n, the bound of Theorem 4 on a⋆n
ℓ

and the above bound for Hβ
2µ and its derivatives

imply the error bound:∣∣∣∣∣a⋆n
ℓ −

K∑
k=1

κ−ℓk Fa (κk )n

n1/(2µk )
Hβk

2µk

(
ℓ−αk n

n1/(2µk )

)
−

K∑
k=1

M∑
m=1

κ−ℓk Fa (κk )n

n(m+1)/(2µk )

(
Pk,m(−d/dx)Hβk

2µk

)(
ℓ−αk n

n1/(2µk )

)∣∣∣∣∣
≤C exp(−c n − c |ℓ|) , (32)

for |ℓ| ≥ L n.
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Let now u0 ∈ ℓp (Z;C) with 1 ≤ p ≤ +∞. Each convolution on the left hand side of (8) is well
defined and belongs to ℓp since it corresponds to the convolution on Z of an ℓ1 sequence with
u0 ∈ ℓp . The conclusion of Corollary 5 follows from two observations. First of all, given any
constant c0 > 0 and any integer µk ∈N∗, we have:

∀n ∈N∗ ,
1

n1/(2µk )

∑
ℓ∈Z

exp

−c0

( |ℓ−αk n|
n1/(2µk )

) 2µk
2µk−1

≤C ,

for some appropriate constant C . Second, for any constant c1 > 0, we also have:∑
ℓ∈Z

exp(−c1 (n +|ℓ|)) ≤C exp(−c1 n) .

We then combine the bounds (7) and (32) with Young’s inequality to obtain the conclusion of
Corollary 5. We have thus obtained an accurate description of the large time asymptotics of the
iterated convolution a⋆n ⋆u0. An example is detailed in the following paragraph.

4.2. A third order scheme for the transport equation

We report now on several calculations that can be made for the so-called O3 scheme, which
is a finite difference approximation of the transport equation. We refer to [8, 9, 19] for more
information about such high order compact approximations.

The O3 scheme corresponds to the finitely supported real valued sequence a = (aℓ)ℓ∈Z that is
defined by:

a−1 := λ (2−λ) (λ−1)

6
, a0 := (2−λ) (1−λ2)

2
, a1 := λ (2−λ) (1+λ)

2
, a2 :=−λ (1−λ2)

6
,

whereλ is a real parameter. All other values of aℓ are zero. As reported in [7, 9], the corresponding
Fourier transform Fa can be explicitly computed, and satisfies:

∀ξ ∈R ,
∣∣∣Fa

(
e iξ )∣∣∣2 = 1− 4

9
λ (2−λ) (1−λ2) sin4

(
ξ

2

) (
3+4λ (1−λ) sin2

(
ξ

2

))
.

In particular, forλ ∈ (0,1), Assumption 1 is satisfied and the second possibility in Lemma 2 occurs.
Furthermore, with the notation of Lemma 2, there holds K = 1 and κ1 = Fa (κ1) = 1. Assuming
from now on that the parameter λ lies in the open interval (0,1), Assumption 3 is also satisfied
with:

α1 =λ , β1 = λ (2−λ) (1−λ2)

24
µ1 = 2.

We now explain the calculation of the cumulants at κ1 = 1 and apply Theorem 4 in that case.
We compute, as ξ tends to zero:

e− iλξFa
(

e iξ )= 1− λ (2−λ) (1−λ2)

24
ξ4 − iλ (2−λ) (1−λ2) (1−2λ)

60
ξ5

+ λ (2−λ) (1−λ2)(1−2λ+2λ2)

144
ξ6 + iλ (2−λ) (1−λ2) (1−2λ) (1− λ+ λ2)

504
ξ7

+O(ξ8) ,

which means that the power series expansion (4) holds at the point κ1 = 1 with:

γ1,5 =−2λ (2−λ) (1−λ2) (1−2λ) , γ1,6 =−5λ (2−λ) (1−λ2) (1−2λ+2λ2) ,

and

γ1,7 =−10λ (2−λ) (1−λ2) (1−2λ) (1− λ+ λ2).
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Using the general formula (13) with m = 1,2,3, we also compute:

P1,1(Y ) = γ1,5

5!
Y 5, P1,2(Y ) = γ1,6

6!
Y 6 + 1

2

(γ1,5

5!

)2
Y 10,

and

P1,3(Y ) = γ1,7

7!
Y 7 +

(γ1,5

5!

)(γ1,6

6!

)
Y 11 + 1

6

(γ1,5

5!

)3
Y 15.

Next, we recall that a is finitely supported so the estimate (7) holds not only for ℓ and n in a
large sector {|ℓ| ≤ L n} but for any (ℓ,n) ∈ Z×N∗. Specifying from now on to λ = 1/2, Theorem 4
gives (with M = 3 in this case):∣∣∣∣a⋆n

ℓ − 1

n1/4
H 3/128

4

(
ℓ−n/2

n1/4

)
+ 1

512n3/4

(
H 3/128

4

)(6)
(
ℓ−n/2

n1/4

)∣∣∣∣≤ C

n5/4
exp

(
−c

( |ℓ−n/2|
n1/4

)4/3
)

.

Here, we have used γ1,5 = γ1,7 = 0 with γ1,6 = −45/32 so that P1,1(Y ) = P1,3(Y ) = 0 and P1,2(Y ) =
− 1

512 Y 6. Upon defining the sequence Rn = (Rn
ℓ

)ℓ∈Z from the above remainder term as

Rn
ℓ

:= a⋆n
ℓ − 1

n1/4
H 3/128

4

(
ℓ−n/2

n1/4

)
+ 1

512n3/4

(
H 3/128

4

)(6)
(
ℓ−n/2

n1/4

)
for any (ℓ,n) ∈ Z×N∗, we show in Figure 2 the log plot of ∥Rn∥ℓ∞ and ∥Rn∥ℓ1 and recover the
respective scaling n−5/4 and n−1. Furthermore, in Figure 3, we illustrate the generalized Gaussian
estimate of the remainder Rn

ℓ
by showing for different time iterations that

n5/4 ∣∣Rn
ℓ

∣∣≤C exp

(
−c

( |ℓ−n/2|
n1/4

)4/3
)

,

with constants C = 0.09 and c = 0.225.

1 1.5 2 2.5 3
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Figure 2. Illustration of the scaling factor in the generalized asymptotic expansion pro-
vided by Theorem 4 in the case of the O3 scheme. We plot log10 ∥Rn∥ℓ∞ (blue circles) and
log10 ∥Rn∥ℓ1 (orange circles) as a function of log10(n) together with a best linear fit for each
norm for n ranging from 1 to 103. For the ℓ∞ norm we find a slope of −1.2707 while for the
ℓ1 norm we find a slope of −0.9887 which compare both well with the predicted −5/4 and
−1 scaling factors of Theorem 4.

Let us finally note that other examples originating from finite difference approximations of
the transport equation (Lax–Friedrichs scheme and so-called ∞ scheme), with several tangency
points (K ≥ 2), can be found in [7, Section 4], and for which the framework of Theorem 4 would
straightforwardly apply.
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Figure 3. Illustration of the rescaled remainder term n5/4
∣∣Rn

ℓ

∣∣ (colored circles) at different
time iterations of the O3 scheme compared with a fixed generalized Gaussian profile
centered at ℓ=λn (solid lines) with λ= 1/2. The fixed generalized Gaussian profile is given

by the sequence ℓ 7→C exp

(
−c

( |ℓ−n/2|
n1/4

)4/3
)

with constants C = 0.09 and c = 0.225.
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