In this paper, we consider the following 1-Laplacian problem
where , is a periodic potential and is periodic and verifies the super-primary condition at infinity. By the Nehari type manifold method, the concentration compactness principle and some analysis techniques, we show the 1-Laplacian equation has a ground state solution.
Accepté le :
Accepté après révision le :
Publié le :
Wang, Shi-Ying 1 ; Chen, Peng 1 ; Li, Lin 2
CC-BY 4.0
@article{CRMATH_2022__360_G4_297_0,
author = {Wang, Shi-Ying and Chen, Peng and Li, Lin},
title = {Ground state solution for a non-autonomous {1-Laplacian} problem involving periodic potential in $\protect \mathbb{R}^N$},
journal = {Comptes Rendus. Math\'ematique},
pages = {297--304},
year = {2022},
publisher = {Acad\'emie des sciences, Paris},
volume = {360},
number = {G4},
doi = {10.5802/crmath.276},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.276/}
}
TY - JOUR
AU - Wang, Shi-Ying
AU - Chen, Peng
AU - Li, Lin
TI - Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$
JO - Comptes Rendus. Mathématique
PY - 2022
SP - 297
EP - 304
VL - 360
IS - G4
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.276/
DO - 10.5802/crmath.276
LA - en
ID - CRMATH_2022__360_G4_297_0
ER -
%0 Journal Article
%A Wang, Shi-Ying
%A Chen, Peng
%A Li, Lin
%T Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$
%J Comptes Rendus. Mathématique
%D 2022
%P 297-304
%V 360
%N G4
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.276/
%R 10.5802/crmath.276
%G en
%F CRMATH_2022__360_G4_297_0
Wang, Shi-Ying; Chen, Peng; Li, Lin. Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$. Comptes Rendus. Mathématique, Tome 360 (2022) no. G4, pp. 297-304. doi: 10.5802/crmath.276
[1] A Berestycki–Lions type result for a class of problems involving the 1-Laplacian operator, Commun. Contemp. Math. (2021), 2150022 | DOI
[2] Existence and profile of ground-state solutions to a 1-Laplacian problem in , Bull. Braz. Math. Soc. (N.S.), Volume 51 (2020) no. 3, pp. 863-886 | Zbl | MR | DOI
[3] The Euler equation for functionals with linear growth, Trans. Am. Math. Soc., Volume 290 (1985) no. 2, pp. 483-501 | Zbl | MR | DOI
[4] Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, MOS-SIAM Series on Optimization, 17, Society for Industrial and Applied Mathematics; Mathematical Optimization Society, Philadelphia, PA, 2014 | Zbl | MR | DOI
[5] Existence and concentration of positive ground states for a 1-Laplacian problem in , Appl. Math. Lett., Volume 100 (2020), 106045 | Zbl | MR | DOI
[6] Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials, J. Math. Anal. Appl., Volume 459 (2018) no. 2, pp. 861-878 | Zbl | MR | DOI
[7] Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions, NoDEA, Nonlinear Differ. Equ. Appl., Volume 25 (2018) no. 5, 47 | Zbl | MR | DOI
[8] Strauss’ and Lions’ type results in with an application to an 1-Laplacian problem, Milan J. Math., Volume 86 (2018) no. 1, pp. 15-30 | Zbl | MR | DOI
[9] Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 829-837 | Numdam | Zbl | MR | DOI
[10] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | Zbl | MR
[11] A Berestycki–Lions’ type result to a quasilinear elliptic problem involving the 1-Laplacian operator, J. Math. Anal. Appl., Volume 500 (2021) no. 1, 125074 | Zbl | MR | DOI
[12] Nonlinear total variation based noise removal algorithms, Physica D, Volume 60 (1992) no. 1-4, pp. 259-268 | Zbl | MR | DOI
[13] Existence of a radial solution to a 1-Laplacian problem in , Appl. Math. Lett., Volume 118 (2021), 107138 | Zbl | MR | DOI
Cité par Sources :





