Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds
Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 75-95

In this paper, we discuss a relationship between the chirality of knots and higher-dimensional twisted Alexander polynomials associated with holonomy representations of hyperbolic 3-cone-manifolds. In particular, we provide a new necessary condition for a knot, that appears in a hyperbolic 3-cone-manifold of finite volume as a singular set, to be amphicheiral. Moreover, we can detect the chirality of hyperbolic twist knots, according to our criterion, using low-dimensional irreducible representations.

Publié le :
DOI : 10.5802/ambp.416
Classification : 57K14, 57K10, 57K32
Keywords: Twisted Alexander polynomial, chirality, hyperbolic 3-cone-manifold, twist knot

Goda, Hiroshi 1 ; Morifuji, Takayuki 2

1 Department of Mathematics Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 JAPAN
2 Department of Mathematics, Hiyoshi Campus Keio University Yokohama 223-8521 JAPAN
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2023__30_1_75_0,
     author = {Goda, Hiroshi and Morifuji, Takayuki},
     title = {Twisted {Alexander} polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {75--95},
     year = {2023},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {30},
     number = {1},
     doi = {10.5802/ambp.416},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ambp.416/}
}
TY  - JOUR
AU  - Goda, Hiroshi
AU  - Morifuji, Takayuki
TI  - Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds
JO  - Annales mathématiques Blaise Pascal
PY  - 2023
SP  - 75
EP  - 95
VL  - 30
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://www.numdam.org/articles/10.5802/ambp.416/
DO  - 10.5802/ambp.416
LA  - en
ID  - AMBP_2023__30_1_75_0
ER  - 
%0 Journal Article
%A Goda, Hiroshi
%A Morifuji, Takayuki
%T Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds
%J Annales mathématiques Blaise Pascal
%D 2023
%P 75-95
%V 30
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.416/
%R 10.5802/ambp.416
%G en
%F AMBP_2023__30_1_75_0
Goda, Hiroshi; Morifuji, Takayuki. Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 75-95. doi: 10.5802/ambp.416

[1] Boileau, Michel; Leeb, Bernhard; Porti, Joan Geometrization of 3-dimensional orbifolds, Ann. Math., Volume 162 (2005) no. 1, pp. 195-250 | DOI | MR | Zbl

[2] Boileau, Michel; Porti, Joan Geometrization of 3-orbifolds of cyclic type. Appendix A by Michael Heusener and Porti, Astérisque, 272, Société Mathématique de France, 2001, vi+208 pages (Appendix A by Michael Heusener and Porti) | Zbl | Numdam

[3] Dubois, Jérôme Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups, Ann. Inst. Fourier, Volume 55 (2005) no. 5, pp. 1685-1734 | DOI | MR | Zbl

[4] Dubois, Jérôme; Yamaguchi, Yoshikazu Twisted Alexander invariant and nonabelian Reidemeister torsion for hyperbolic three dimensional manifolds with cusps (2009) | arXiv

[5] Dunfield, Nathan M.; Friedl, Stefan; Jackson, Nicholas Twisted Alexander polynomials of hyperbolic knots, Exp. Math., Volume 21 (2012) no. 4, pp. 329-352 | DOI | MR | Zbl

[6] Friedl, Stefan; Kim, Taehee; Kitayama, Takahiro Poincaré duality and degrees of twisted Alexander polynomials, Indiana Univ. Math. J., Volume 61 (2012) no. 1, pp. 147-192 | Zbl

[7] Friedl, Stefan; Vidussi, Stefano A survey of twisted Alexander polynomials, The Mathematics of Knots: Theory and Application (Banagl, Markus; Vogel, Denis, eds.) (Contributions in Mathematical and Computational Sciences), Volume 1, Springer, 2010, pp. 45-94 | Zbl

[8] Goda, Hiroshi Twisted Alexander invariants and hyperbolic volume, Proc. Japan Acad., Ser. A, Volume 93 (2017) no. 7, pp. 61-66 | MR | Zbl

[9] Herald, Chris; Kirk, Paul; Livingston, Charles Metabelian representations, twisted Alexander polynomials, knot slicing, and mutation, Math. Z., Volume 265 (2010) no. 4, pp. 925-949 | DOI | MR | Zbl

[10] Hilden, Hugh; Lozano, María Teresa; Montesinos-Amilibia, José María On a remarkable polyhedron geometrizing the figure eight knot cone manifolds, J. Math. Sci., Tokyo, Volume 2 (1996) no. 3, pp. 501-561 | MR | Zbl

[11] Hillman, Jonathan A.; Livingston, Charles; Naik, Swatee Twisted Alexander polynomials of periodic knots, Algebr. Geom. Topol., Volume 6 (2006), pp. 145-169 | DOI | MR | Zbl

[12] Hoste, Jim; Shanahan, Patrick D. Trace fields of twist knots, J. Knot Theory Ramifications, Volume 10 (2001) no. 4, pp. 625-639 | DOI | MR | Zbl

[13] Hoste, Jim; Shanahan, Patrick D. A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications, Volume 13 (2004) no. 2, pp. 193-209 | DOI | MR | Zbl

[14] Kirk, Paul; Livingston, Charles Twisted knot polynomials: inversion, mutation and concordance, Topology, Volume 38 (1999) no. 3, pp. 663-671 | DOI | MR | Zbl

[15] Kitano, Teruaki Twisted Alexander polynomial and Reidemeister torsion, Pac. J. Math., Volume 174 (1996) no. 2, pp. 431-442 | DOI | MR | Zbl

[16] Kitano, Teruaki; Morifuji, Takayuki Divisibility of twisted Alexander polynomials and fibered knots, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (2005), pp. 179-186 | MR | Numdam | Zbl

[17] Kojima, Sadayoshi Deformations of hyperbolic 3-cone-manifolds, J. Differ. Geom., Volume 49 (1998) no. 3, pp. 469-516 | MR | Zbl

[18] Lin, Xiao-Song Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin., Engl. Ser., Volume 17 (2001) no. 3, pp. 361-380 | MR | Zbl

[19] Mednykh, Alexander; Rasskazov, Alexey Volumes and degeneration of cone-structures on the figure-eight knot, Tokyo J. Math., Volume 29 (2006) no. 2, pp. 445-464 | MR | Zbl

[20] Menal-Ferrer, Pere; Porti, Joan Twisted cohomology for hyperbolic three manifolds, Osaka J. Math., Volume 49 (2012) no. 3, pp. 741-769 | MR | Zbl

[21] Menal-Ferrer, Pere; Porti, Joan Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds, J. Topol., Volume 7 (2014) no. 1, pp. 69-119 | DOI | MR | Zbl

[22] Morifuji, Takayuki Representations of knot groups into SL(2,) and twisted Alexander polynomials, Handbook of Group Actions. Vol. I (Ji, L.; Papadopoulos, A.; Yau, S.-T., eds.) (Advanced Lectures in Mathematics), Volume 31, International Press, 2015, pp. 527-576 | MR

[23] Morifuji, Takayuki On adjoint torsion polynomial of genus one two-bridge knots, Kodai Math. J., Volume 45 (2022) no. 1, pp. 110-116 | MR | Zbl

[24] Morton, Hugh R. Mutant knots, New ideas in low dimensional topology (Kauffman, L. H.; Manturov, V. O., eds.) (Series on Knots and Everything), Volume 56, World Scientific, 2015, pp. 379-412 | DOI | MR | Zbl

[25] Porti, Joan Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology, Volume 37 (1998) no. 2, pp. 365-392 | DOI | MR | Zbl

[26] Porti, Joan Spherical cone structures on 2-bridge knots and links, Kobe J. Math., Volume 21 (2004) no. 1-2, pp. 61-70 | MR | Zbl

[27] Porti, Joan Reidemeister torsion, hyperbolic three-manifolds, and character varieties, Handbook of Group Actions. Vol. IV (Ji, L.; Papadopoulos, A.; Yau, S.-T., eds.) (Advanced Lectures in Mathematics), Volume 41, International Press, 2018, pp. 447-507 | MR | Zbl

[28] Porti, Joan; Weiss, Hartmut Deforming Euclidean cone 3-manifolds, Geom. Topol., Volume 11 (2007), pp. 1507-1538 | Zbl | DOI | MR

[29] Sakuma, Makoto A survey of the impact of Thurston’s work on knot theory, In the tradition of Thurston–geometry and topology (Ohshika, K.; Papadopoulos, A., eds.), Springer, 2020, pp. 67-160 | DOI | MR | Zbl

[30] Thurston, William P. The Geometry and Topology of 3-manifolds (1977/78) (Lecture Notes, Princeton University)

[31] Tran, Anh T. Adjoint twisted Alexander polynomials of genus one two-bridge knots, J. Knot Theory Ramifications, Volume 25 (2016), 1650065, 13 pages | MR | Zbl

[32] Tran, Anh T. Twisted Alexander polynomials of genus one two-bridge knots, Kodai Math. J., Volume 41 (2018) no. 1, pp. 86-97 | MR | Zbl

[33] Wada, Masaaki Twisted Alexander polynomial for finitely presentable groups, Topology, Volume 33 (1994) no. 2, pp. 241-256 | DOI | MR | Zbl

[34] Waldhausen, Friedhelm Algebraic K-theory of generalized free products. I, Ann. Math., Volume 108 (1978), pp. 135-204 | DOI | Zbl

[35] Yamaguchi, Yoshikazu A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 337-362 | MR | Numdam | Zbl | DOI

Cité par Sources :