Let be a two dimensional totally real submanifold of class in . A continuous map of the closed unit disk into that is holomorphic on the open disk and maps its boundary into is called an analytic disk with boundary in . Given an initial immersed analytic disk with boundary in , we describe the existence and behavior of analytic disks near with boundaries in small perturbations of in terms of the homology class of the closed curve in . We also prove a regularity theorem for immersed families of analytic disks, consider several examples, and construct a totally real three torus in with a bizzare polynomially convex hull.
Soit une sous-variété totalement réelle de dimension 2 et classe dans . Une application continue de disque-unité fermé dans , qui est holomorphe sur et applique sa frontière dans , est appelée un disque analytique avec frontière dans . Etant donné un disque initial avec frontière dans , on détermine l’existence des disques près de avec les frontières dans les petites perturbations de à l’aide de la classe d’homologie de courbe dans . On démontre aussi un théorème de régularité pour des familles des disques et on construit un tore totalement réel de dimension 3 dans avec une étrange enveloppe convexe polynomiale.
@article{AIF_1987__37_1_1_0,
author = {Forstneric, Franc},
title = {Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$},
journal = {Annales de l'Institut Fourier},
pages = {1--44},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {37},
number = {1},
year = {1987},
doi = {10.5802/aif.1076},
mrnumber = {88j:32019},
zbl = {0583.32038},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1076/}
}
TY - JOUR
AU - Forstneric, Franc
TI - Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$
JO - Annales de l'Institut Fourier
PY - 1987
SP - 1
EP - 44
VL - 37
IS - 1
PB - Institut Fourier
PP - Grenoble
UR - https://www.numdam.org/articles/10.5802/aif.1076/
DO - 10.5802/aif.1076
LA - en
ID - AIF_1987__37_1_1_0
ER -
%0 Journal Article
%A Forstneric, Franc
%T Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$
%J Annales de l'Institut Fourier
%D 1987
%P 1-44
%V 37
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1076/
%R 10.5802/aif.1076
%G en
%F AIF_1987__37_1_1_0
Forstneric, Franc. Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$. Annales de l'Institut Fourier, Volume 37 (1987) no. 1, pp. 1-44. doi: 10.5802/aif.1076
[1] , Hulls of deformations in Cn, Trans. Amer. Math. Soc., 266 (1981), 243-257. | Zbl | MR
[2] , A note on polynomially convex hulls, Proc. Amer. Math. Soc., 33 (1972), 389-391. | Zbl | MR
[3] and , Polynomial hulls with convex fibers, Math. Ann., 271 (1985), 99-109. | Zbl | MR
[4] , Stability of the polynomial hull of T2, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 8 (1982), 311-315. | Zbl | Numdam
[5] , Levi flat hypersurfaces in C2 with prescribed boundary : Stability, Annali Scuola Norm. Sup. Pisa cl. Sci., 9 (1982), 529-570. | Zbl | MR | Numdam
[6] and , Envelopes of holomorphy of certain two-spheres in C2, Amer. J. Math., 105 (1983), 975-1009. | Zbl | MR
[7] , Differentiable manifolds in complex Euclidean spaces, Duke Math. J., 32 (1965), 1-21. | Zbl | MR
[8] and , CR extensions near a point of higher type, Duke Math. J., 52 (1985), 67-102. | Zbl
[9] , Cohomology of maximal ideal spaces, Bull Amer. Math. Soc., 67 (1961), 515-516. | Zbl | MR
[10] , Calcul Différentiel, Hermann, Paris 1967. | Zbl | MR
[11] and , A theorem on orientable surfaces in four-dimensional space, Comm. Math. Helv., 25 (1951), 205-209, North Holland, Amsterdam 1975. | Zbl | MR
[12] , Regularity of boundaries of analytic sets, (Russian) Math. Sb (N.S.) 117 (159), (1982), 291-334. English translation in Math. USSR Sb., 45 (1983), 291-336. | Zbl | MR
[13] and , Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94-123. | Zbl | MR
[14] and , Maximum modulus sets, Ann. Inst. Fourier, 31-3 (1981), 37-69. | Zbl | MR | Numdam
[15] , The Theory of Hp spaces, Academic Press, New-York and London, 1970. | Zbl | MR
[16] and , Stable Mappings and their Singularities, Graduate Texts in Mathematics, 41, Springer-Verlag, New-York, Heidelberg, Berlin 1973. | Zbl | MR
[17] and , Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., 197 (1972), 287-318. | Zbl | MR
[18] , Grundzüge einer allgemeiner Theorie der linearen Integralgleichungen, Leipzig, 1912.
[19] and , Families of analytic disks in Cn with boundaries in a prescribed CR manifold, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 327-380. | Zbl | Numdam
[20] and , The local hull of holomorphy of a surface in the space of two complex variables, Invent. Math., 67 (1982), 1-21. | Zbl | MR
[21] and , On the hull of holomorphy of n-manifold in Cn, Annali Scuola Norm. Sup. Pisa sci., 11 (1984), 261-280. | Zbl | MR | Numdam
[22] , La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. | Zbl | MR | Numdam
[23] , Integral Equations and their Applications, Pergamon Press, Oxford, 1966. | Zbl | MR
[24] , Totally real Klein bottles in C2, Proc. Amer. Math. Soc., 82 (1981), 653-654. | Zbl | MR
[25] , The Topology of Fiber Bundles, Princeton University Press, Princeton, New Jersey, 1951. | Zbl
[26] , A hull with no analytic structure, J. Math. Mech., 12 (1963), 103-112. | Zbl | MR
[27] , Minimal surfaces in Kähler manifolds, Preprint. | Zbl
[28] , The Euler and Pontrjagin numbers of an n-manifold in Cn, Preprint. | Zbl
[29] , Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics 29, Amer. Math. Soc., Providence, R.I., 1977. | Zbl | MR
[30] , Polynomially convex hulls and analyticity, J. Math. Mech., 20 (1982), 129-135. | Zbl | MR
[31] , A class of nonlinear Riemann-Hilbert problems for holomorphic functions, Math. Nachr., 116 (1984), 89-107. | Zbl | MR
[32] , Polynomially convex hulls with piecewise smooth boundaries, Math. Ann., 276 (1986), 97-104. | Zbl | MR
[33] , On the nonlinear Riemann - Hilbert problem. To appear.
Cited by Sources:






