@article{ASNSP_1978_4_5_2_327_0,
author = {Hill, C. Denson and Taiani, Geraldine},
title = {Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {327--380},
year = {1978},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 5},
number = {2},
mrnumber = {501906},
zbl = {0399.32008},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1978_4_5_2_327_0/}
}
TY - JOUR
AU - Hill, C. Denson
AU - Taiani, Geraldine
TI - Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
SP - 327
EP - 380
VL - 5
IS - 2
PB - Scuola normale superiore
UR - https://www.numdam.org/item/ASNSP_1978_4_5_2_327_0/
LA - en
ID - ASNSP_1978_4_5_2_327_0
ER -
%0 Journal Article
%A Hill, C. Denson
%A Taiani, Geraldine
%T Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1978
%P 327-380
%V 5
%N 2
%I Scuola normale superiore
%U https://www.numdam.org/item/ASNSP_1978_4_5_2_327_0/
%G en
%F ASNSP_1978_4_5_2_327_0
Hill, C. Denson; Taiani, Geraldine. Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 5 (1978) no. 2, pp. 327-380. https://www.numdam.org/item/ASNSP_1978_4_5_2_327_0/
[1] - - - , Complexes of differential operators. The Mayer-Vietoris sequence, Inventiones Math., 35 (1976), pp. 43-86. | Zbl
[2] , The elements of real analysis, John Wiley and Sons, New York, 1964. | MR
[3] , Differentiable manifolds in complex Euclidean space, Duke Math. J., (1965), pp. 1-22. | Zbl | MR
[4] - , Methods of mathematical physics, Vol. II, Interscience Publishers, New York, 1962. | Zbl | MR
[5] - - , The maximum modulus principle. - I: Necessary conditions, Indiana Univ. Math. J., 25 (1976), pp. 709-717. | Zbl | MR
[6] , Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa, 22 (1968), pp. 275-314. | Zbl | MR | Numdam
[7] , A Kontinuitätssatz for ∂M and Lewy extendibility, Indiana Univ. Math. J., 22 (1972), pp. 339-347. | Zbl
[8] - , Hyperf-unction cohomology classes and their boundary values, Ann. Scuola Norm. Sup. Pisa, 4 (1977), pp. 577-597. | Zbl | MR | Numdam
[9] , Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. | Zbl | MR
[10] , An introduetion to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. | Zbl | MR
[11] - , Extensions of CR-functions, Amer. J. Math., 98 (1976), pp. 805-820. | Zbl | MR
[12] , On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. Math., 64 (1956), pp. 514-522. | Zbl | MR
[13] , An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), pp. 155-158. | Zbl | MR
[14] , On hulls of holomorphy, Comm. Pure Appl. Math., 13 (1960), pp. 587-591. | Zbl | MR
[15] , Strong derivatives and inverse mappings, Amer. Math. Monthly, 81 (1974), pp. 969-980. | Zbl | MR
[16] , On the H. Lewy extension phenomenon, Trans. Amer. Math. Soc., 168 (1972), pp. 337-356. | Zbl | MR
[17] , On a generalization of the concept of functions, Proc. Japan Acad., 34 (1958), pp. 126-130 and 604-608. | MR
[18] , Theory of hyperfunctions, J. Fac. Sci., Univ. Tokyo, Sect. I, 8 (1959-60), pp. 139-193 and 387-436. | Zbl | MR
[19] - - , Microfunctions and pseudodifferential equations, in Hyperfunctions and pseudodifferential equations, Lecture Notes in Math., 287 (1973), pp. 265-529. | Zbl | MR
[20] , Théorie des hyperfonctions, Lecture Notes in Math., 126 (1970). | Zbl | MR
[21] , On holomorphic extension from real submanifolds of complex Euclidean space, Ph. D. Thesis, M.I.T., Cambridge, Mass., 1966.
[22] , On the local holomorphic hull of a real submanifold in several complex variables, Comm. Pure Appl. Math., 19 (1966), pp. 145-165. | Zbl | MR





