The perimeter cascade in critical Boltzmann quadrangulations decorated by an O(n) loop model
Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 4, pp. 535-584

We study the branching tree of the perimeters of the nested loops in the non-generic critical O(n) model on random quadrangulations. We prove that after renormalization it converges towards an explicit continuous multiplicative cascade whose offspring distribution (x i ) i1 is related to the jumps of a spectrally positive α-stable Lévy process with α=3 2±1 π arccos (n/2) and for which we have the surprisingly simple and explicit transform

𝔼 i 1 ( x i ) θ = sin ( π ( 2 - α ) ) sin ( π ( θ - α ) ) , f o r θ ( α , α + 1 ) .

An important ingredient in the proof is a new formula of independent interest on first moments of additive functionals of the jumps of a left-continuous random walk stopped at a hitting time. We also identify the scaling limit of the volume of the critical O(n)-decorated quadrangulation using the Malthusian martingale associated to the continuous multiplicative cascade.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/94
Classification : 60-XX, 05-XX
Keywords: $O(n)$ loop model, random planar map, multiplicative cascade, invariance principle, stable Lévy process
@article{AIHPD_2020__7_4_535_0,
     author = {Chen, Linxiao and Curien, Nicolas and Maillard, Pascal},
     title = {The perimeter cascade in critical {Boltzmann} quadrangulations decorated by an $O(n)$ loop model},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {535--584},
     year = {2020},
     volume = {7},
     number = {4},
     doi = {10.4171/aihpd/94},
     mrnumber = {4182775},
     zbl = {1454.05106},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/94/}
}
TY  - JOUR
AU  - Chen, Linxiao
AU  - Curien, Nicolas
AU  - Maillard, Pascal
TI  - The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2020
SP  - 535
EP  - 584
VL  - 7
IS  - 4
UR  - https://www.numdam.org/articles/10.4171/aihpd/94/
DO  - 10.4171/aihpd/94
LA  - en
ID  - AIHPD_2020__7_4_535_0
ER  - 
%0 Journal Article
%A Chen, Linxiao
%A Curien, Nicolas
%A Maillard, Pascal
%T The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model
%J Annales de l’Institut Henri Poincaré D
%D 2020
%P 535-584
%V 7
%N 4
%U https://www.numdam.org/articles/10.4171/aihpd/94/
%R 10.4171/aihpd/94
%G en
%F AIHPD_2020__7_4_535_0
Chen, Linxiao; Curien, Nicolas; Maillard, Pascal. The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 4, pp. 535-584. doi: 10.4171/aihpd/94

Cité par Sources :