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The perimeter cascade

in critical Boltzmann quadrangulations

decorated by an O.n/ loop model

Linxiao Chen, Nicolas Curien, and Pascal Maillard

Abstract. We study the branching tree of the perimeters of the nested loops in the non-

generic critical O.n/ model on random quadrangulations. We prove that after renormal-

ization it converges towards an explicit continuous multiplicative cascade whose offspring

distribution .xi /i�1 is related to the jumps of a spectrally positive ˛-stable Lévy process

with ˛ D 3
2

˙ 1
�

arccos.n=2/ and for which we have the surprisingly simple and explicit

transform

E

h

X

i�1

.xi /
�

i

D sin.�.2� ˛//
sin.�.� � ˛// ; for � 2 .˛; ˛ C 1/:

An important ingredient in the proof is a new formula of independent interest on first mo-

ments of additive functionals of the jumps of a left-continuous random walk stopped at a

hitting time. We also identify the scaling limit of the volume of the criticalO.n/-decorated

quadrangulation using the Malthusian martingale associated to the continuous multiplica-

tive cascade.
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1. Introduction

We build on the work by Borot, Bouttier, and Guitter [13] on critical Boltzmann

quadrangulations decorated by an O.n/ loop model. Among other things, they

showed that the so-called gasket associated to a critical O.n/-decorated random

Boltzmann quadrangulation is for a certain choice of parameters a non-generic

critical Boltzmann map, in the sense that the face weights have a polynomial

decay k�a with a D 2 ˙ 1
�

arccos
�

n
2

�

. In this work we analyze in detail the

nested sequence of the perimeters of the loops and show that it converges towards

an explicit multiplicative cascade related to a stable Lévy process with index

˛ D a � 1
2
. To properly state our results, let us first recall the setup of [13].

Definition of the loop model. In the terminology of [13] we work with the rigid

O.n/ loop model on quadrangulations. Recall that in a rooted planar map m, the

face fr to the right of the root edge is called the root face or the external face (the

other faces being internal faces). Its degree is called the perimeter of the map.

A quadrangulation with a boundary is a rooted planar map q whose internal faces

all have degree four. A (rigid) loop configuration on a quadrangulation with a

boundary is a set ` D ¹`1; `2; : : : º of disjoint undirected simple closed paths in

the dual map which do not visit the external face, and with the additional constraint

that when a loop visits a face of q it must cross it through opposite edges. In other

words, the internal faces of q can only be of the following two types

;

see Figure 1. The pair .q; `/will henceforth be called a loop-decorated quandran-

gulation with a boundary.

Given n 2 .0; 2/, g � 0 and h � 0, we define a measure w on the set of all

loop-decorated quadrangulations with a boundary by putting

w.nIg;h/..q; `// D gjqj�j`jhj`jn#` (1)

where jqj is the number of inner faces of q, j`j is the total length of the loops of `

and #` is the number of loops in `. For example, the weight of the quadrangulation

presented in Figure 1 is g8h38n9. We denote by Op the set of all loop-decorated

quadrangulations with a boundary whose external face has degree 2p and put

Fp.nI g; h/ D
X

.q;`/2Op

w.nIg;h/..q; `//: (2)
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Figure 1. Left: a loop-decorated quadrangulation with a boundary of perimeter 24. Top

right: the topological representation of the quadrangulation as a “cactus” which highlights

the nesting of the loops. Bottom right: the nesting tree labeled by the half-perimeters of

the loops.

If Fp.nI g; h/ is finite (it is not hard to see that the finiteness does not depend

on the value of p � 1) the set of parameters .nI g; h/ is said admissible and we

can define the normalized probability distribution on Op:

P
.p/

nIg;h
.�/ D w.nIg;h/.�/

Fp.nI g; h/:

For large p, the geometry of a random map distributed according to P
.p/

nIg;h
de-

pends heavily on the parameters .nI g; h/. Borot, Bouttier, and Guitter [13] have

classified this set of parameters into three categories called subcritical, generic

critical or non-generic critical, see Figure 2.

In the subcritical case, roughly speaking the random maps distributed accord-

ing to P
.p/

nIg;h
are tree-like for large p and are expected to converge in the scaling

limit towards Aldous’ CRT. In the generic critical case, they are believed to be-

have as standard quadrangulations with a boundary and should converge towards

the Brownian disk [6]. In the non-generic critical case however, the geometry of

these maps remains elusive and the only available information we have is on their

gasket [33], see Section 2.1 for the definition. In particular, in this regime we have

the asymptotic

Fp.nI g; h/ �
p!1

C�pp�˛�1=2; (3)
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Figure 2. Phase diagram of the loop-decorated quadrangulation model [13, 16] for a given

value of n 2 .0; 2/ (the diagram is qualitatively the same for all such n). For every

admissible set of parameters .nI g; h/, the asymptotic form (3) holds. The different phases

are characterized by different values of the exponent ˛. The critical line separates the sub-

critical region (below) and the inadmissible region (above).

for some C > 0; � > 0 and where the exponent ˛ satisfies

˛ D 3

2
˙ 1

�
arccos

�n

2

�

2 .1; 2/n
°3

2

±

: (4)

Here, the sign depends on the parameters g and h, see Figure 2. The case

˛ D 3
2

� 1
�

arccos
�

n
2

�

2
�

1; 3
2

�

is called the dense case because in a suitable

scaling limit, the loops are believed to touch themselves and each other, whereas

in the dilute case ˛ D 3
2

C 1
�

arccos
�

n
2

�

2
�

3
2
; 2

�

they are believed to be simple

and not to touch each other.

To be precise, the work [13] must be completed by [16, Appendix] in order

to have a fully rigorous proof of the above phase diagram and in particular of the

existence of non-generic critical parameter .nI g; h/.

Nota Bene. In the rest of the paper we assume we are given a non-generic critical

set of parameters .nI g; h/with n 2 .0; 2/ and h; g � 0 in the sense of Definition 2.3

below—in particular (3) holds for a value of ˛ 2
�

1; 3
2

�

[
�

3
2
; 2

�

that is fixed in the

rest of the paper. We shall sometimes drop the implicit dependence in .nI g; h/ in

what follows.
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Discrete and continuous cascades. We are interested in the perimeters and the

nesting structure of the loops in a random loop-decorated quadrangulation dis-

tributed according to P
.p/

.nIg;h/
as p ! 1. If .q; `/ is a loop-decorated quadrangu-

lation with a boundary of perimeter 2p, we can associate with it a random labeled

tree as follows. We start with the so-called Ulam tree

U D
[

n�0

.N�/n:

Here and throughout we use French notation, i.e. N D ¹0; 1; 2; : : :º and N
� D

Nn¹0º and set .N�/0 D ¹¿º. If u; v 2 U we write uv for the concatenation of u

and v, and we write juj D k if u is s vertex in the k-th generation, i.e. u 2 .N�/k.

Then we assign each loop ` 2 ` to a vertex of U in the following fashion. First, the

root vertex ¿ of U is associated with an imaginary loop of length 2p surrounding

the boundary of q. Next we assign to the children 1; 2; 3; � � � of ¿ the outer-most

loops of .q; `/—i.e. those loops which can be reached from the boundary of q

without crossing any other loop—ranked by decreasing perimeter (if there is a

tie we break it using a deterministic rule). We then continue genealogically inside

each of these loops in the most obvious way, see Figure 1. AlthoughU is an infinite

(even non locally finite) tree, the set of vertices attached to a loop of ` is a finite

subtree of U. Once this is done, we define the labeling

�Wu 2 U 7�! �.u/ 2 N

which is the half-perimeter of the loop associated to u in .q; `/ or 0 if there are no

such loop. (Recall that the loops all have even perimeter because q is bipartite.)

We now introduce the limiting continuous multiplicative cascade. Given a

distribution � on .RC/
N�

, let ¹.�.u/i /i�1Wu 2 Uº be an i.i.d. family of (infinite)

random vectors of law �. The multiplicative cascade with offspring distribution

� is then the random process .Z.u//u2U indexed by the Ulam tree such that

Z.¿/ D 1 and such that for any u 2 U and any i 2 N
� we haveZ.ui/ D Z.u/��.u/i .

We will apply this to a particular law �. Let .�t /t�0 be an ˛-stable Lévy process

with no negative jumps started at 0; in other words for some constant C > 0 we

have EŒexp.���t /� D exp.C t�˛/ for all � > 0. Let � denote the hitting time of

�1 of this process. Notice that � < 1 a.s. because � does not drift to infinity, and

we have �� D �1 since � has no negative jumps. We write .��/
#
� for the infinite

vector consisting of the sizes of the jumps of � before time � , ranked in decreasing

order. Then we define a probability distribution �˛ on .RC/
N

�

by

Z

d�˛.x/F.x/ D
E

�

1
�
F..��/

#
� /

�

E
�

1
�

� :
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By the scaling property of stable Lévy processes, the above definition of �˛ does

not depend on the constant C > 0 appearing in the normalization of �.

We also define the function �˛.�/ WD E
�
P

i�1.Z˛.i//
�
�

, which we call the

Biggins transform of the multiplicative cascade Z˛ after the seminal work of

Biggins [7]. (Notice that the sum in the expectation runs on the first generating of

the multiplicative cascade Z˛ .) We can now state our main result:

Theorem 1.1 (convergence of the perimeter cascade). Recall that the set of

parameters .nI g; h/ is non-generic critical. Let �.p/ be the random labeling on

the Ulam tree when the underlying loop-decorated quadrangulation is distributed

according to P
.p/

.nIg;h/
. Then we have the following convergence in distribution

1

p
.�.p/.u//u2U

.d/����!
p!1

.Z˛.u//u2U

in `1.U/, where Z˛ is the multiplicative cascade with offspring distribution �˛ .

In addition, the Biggins transform of the multiplicative cascadeZ˛ is explicit and

equals

�˛.�/ D

8

ˆ

<

ˆ

:

sin.�.2� ˛//

sin.�.� � ˛// for � 2 .˛; ˛ C 1/;

1 otherwise.

Remark 1.2. Here `1.U/ is defined as usual as the set of bounded functions

on the countable set U, endowed with the supremum norm. The above conver-

gence is much stronger than the convergence of finite dimensional marginals,

i.e. the weak convergence under the product topology of R
U. Roughly speak-

ing, `1.U/ convergence implies that that there are no microscopic loops at some

generation which contain macroscopic loops at a next generation. This is needed

in particular to ensure that the convergence is preserved under relabelling of the

loops. For example, if we consider the auxiliary process .z�.p/.n; i//n2N; i2N� ,

where z�.p/.n; i/ is the half-perimeter of the i-th largest loop at the n-th genera-

tion, then the finite dimensional convergence of .p�1�.p/.u//u2U would not be

enough to imply finite dimensional convergence of .p�1 z�.p/.n; i//n2N; i2N� , but

`1.U/ convergence does imply it (and furthermore implies `1.U/ convergence

of .p�1 z�.p/.n; i//n2N; i2N�).

Properties of the multiplicative cascade Z˛. In Section 4 we establish some

interesting properties of the multiplicative cascade Z˛ . First, in Section 4.1,

we define the family of additive martingales, an important observable of the

multiplicative cascade. We also calculate the rate function of the multiplicative
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cascade, i.e. the Legendre–Fenchel transform of log �˛. In Section 4.2, we study

the Malthusian martingale

X

jujDn

.Z˛.u//
min.2;2˛�1/ :

We show that it is uniformly integrable and identify the law of its limit to be equal

to (in the dilute phase ˛ > 3
2
) or related to (in the dense phase ˛ < 3=2) an inverse-

Gamma distribution with explicit parameters. As explained there, one can prove

that this distribution is the scaling limit of the volume of a critical O.n/-deco-

rated map with a boundary, assuming that the family of renormalized volumes is

uniformly integrable. Finally, in Section 4.3, we establish Lp-convergence of the

additive martingales, for suitable p. This ensures that the multiplicative cascade

Z˛ displays no pathological behavior.

We now outline the proof of Theorem 1.1, which comes in three parts.

Convergence of finite dimensional marginals. It is proved in [13] that a loop-

decorated quadrangulation .q; `/ distributed according to P
.p/

.nIg;h/
can be split into

its gasket—the part of q outside the outer-most loops of `—and a number of

smaller loop-decorated quadrangulations. Moreover, conditionally on the gasket,

the smaller loop-decorated quadrangulations are independent and follow the same

type of distribution as .q; `/. This settles the Markovian branching structure

of the perimeter process �.p/, thus reducing the problem of convergence of its

finite dimensional marginals essentially to the convergence of its first generation

(Proposition 2.1).

It is also shown in [13] that the gasket is a bipartite Boltzmann map with a

boundary where each face of degree 2k receives a weight gk (which is a sim-

ple function of Fk.nI g; h/, see (6)). This random map model (more precisely,

the pointed version of it, see below) has been introduced in [35] and studied

under these hypotheses in [33]. Applying (a variant of ) the classical Bouttier–

Di Francesco–Guitter bijection [14], the (pointed) gasket is coded by a two-type

Galton–Watson forest. The latter can be further simplified by applying a bijection

of Janson and Stefánsson [29] that transforms it into a one-type Galton–Watson

forest, which under our assumption consists of p i.i.d. Galton–Watson trees with

a critical offspring distribution in the domain of attraction of the spectrally pos-

itive ˛-stable distribution. In this coding, the loops of the first generation are

transformed into the (large) faces of the gasket and then into the (large) jumps

of the Łukasiewicz path encoding the one-type Galton–Watson forest. The lat-

ter naturally converges to the jumps of an ˛-stable Lévy process, which explains
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the appearance of the process .��/
#
� in the definition of �˛ . The above chain of

transformations is summarized in a diagram at the beginning of Section 2.

One technical issue in this program is that the Bouttier–Di Francesco–Guitter

bijection works particularly well with pointed maps, i.e. maps with a distinguished

vertex. For this reason we start by applying the bijections to the pointed gasket,

and only remove the distinguished point afterwards. This amounts to biasing the

pointed gasket by the inverse of its number of vertices, which in the continuous

setting give rise to the bias ��1 in the definition of the measure �˛ .

A formula for left-continuous random walks. As we saw in Theorem 1.1, the

multiplicative cascade Z˛ has an explicit and rather simple Biggins transform.

This formula is obtained through a new simple identity about the (biased) first

moment of some additive functionals of left-continuous random walks. This

identity may have further applications and so we present it here. Let S be a left-

continuous random walk on Z started from 0, i.e. Sn D X1 C � � � C Xn, where

.Xi /i�1 are i.i.d. random variables on ¹�1; 0; 1; � � � º. We denote by Tp the hitting

time of �p 2 Z by S .

Theorem 1.3. Suppose that S does not drift to 1 i.e. that T1 < 1 almost surely.

Then for any positive measurable function f WZ ! R and any p � 2,

E

h 1

Tp � 1

Tp
X

iD1

f .Xi /
i

D E

h

f .X1/
p

p CX1

i

:

From finite dimensional to `1.U/ convergence. We now explain how we

strengthen the finite-dimensional convergence of p�1�.p/ towards Z˛ to `1.U/

convergence (see the remark after Theorem 1.1 for why this is important). One

essentially needs that, with high probability, p�1�.p/ is arbitrarily small outside

a finite subset of U, uniformly in p.

We first concentrate on the first k generations of the tree U. Using the identity

in Theorem 1.3, we compute E
�
P

jujDk.p
�1�.p/.u//�

�

, the discrete analogue of

Biggins transform, and show that it converges to the k-th power of the continuous

Biggins transform given in Theorem 1.1 (Lemma 5.3). This yields a moment

estimate on the sizes of all the loops up to generation k, which implies the `1

convergence on the first k generations (Proposition 5.2). In order to strengthen

this to `1.U/ convergence, we rely on a geometric estimate on random planar

maps: if we denote by xV.p/ the expected volume (i.e. number of vertices) of a

random loop-decorated quadrangulation under the distribution P
.p/

nIg;h
, then using
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the Markovian structure of the gasket decomposition it is easy to check that

X

jujDk

xV.�.p/.u// is a supermartingale indexed by k � 0;

which gives a uniform control over all generations. This additional ingredient

together with recent estimates on xV.p/ due to Budd [16] are at the core of our

proof of the `1 convergence.

Related works. Understanding the geometry of planar maps decorated with a

statistical physics model in one of the major goals in today’s theory of random

planar maps (see [42, 26, 27, 28, 2, 17, 25] for recent progresses on the geometry

of general random planar maps decorated by a Fortuin–Kasteleyn model). Our

interest in the nested cascades in O.n/ model on random quadrangulations was

triggered by the recent work of Borot, Bouttier and Duplantier [11]. They study

(in the case of triangulations) in great detail the number of loops separating the

boundary from a typical point; in our context, this roughly speaking consists in

estimating the length of a typical branch of the tree coded by the cascade .�.p//.

Our perspective here is different since we study the full nested tree (rather than

one branch) in a scaling limit point of view (rather than in the discrete setting). In

Appendix A we provide more details of the relation between the two approaches.

We also give an alternative explanation of the relation with the statistics of the

number of loops surrounding a small Euclidean ball in a conformal loop ensemble.

This work obviously builds upon [13] where the gasket decomposition was

introduced and used to study the phase diagram of Figure 2. Our study of the

gasket in the non-generic critical case also borrows a lot from [33] and indeed the

law �˛ can be interpreted as the sizes of large faces in what would be a “stable map

with a boundary”. See also [15] for a geometric study of the duals of the above

planar maps.

It was recently shown by Gwynne and Sun [28] that random planar maps

decorated with a Fortuin–Kasteleyn statistical mechanics model (which naturally

defines an ensemble of loops) converge in the so-called peanosphere topology to

the Liouville quantum sphere introduced by Duplantier, Miller and Sheffield [21],

together with an independent conformal loop ensemble. This topology allows in

particular to measure the lengths of the loops in the “quantum metric”, as well

as the “quantum volume” of their interior. A well-known conjecture stipulates

that the O.n/-decorated quadrangulations considered in this paper converge to

the Liouville quantum disk with parameter 
 D
p

min.�; 16=�/, also introduced

in [21], together with an independent CLE� in the disk. Here, � 2 .8=3; 8/ is
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related to our parameter ˛ by

˛ � 3

2
D 4=� � 1; (5)

so that � 2 .8=3; 8/n¹4º. In fact, our Theorem 1.1 has an analogue in the

continuum, which we formulate as follows:

Consider a Liouville quantum disk with parameter 
 D
q

min
�

�; 16
�

�

conditioned

on having quantum boundary lengt 1 and an independent CLE� in the disk, with

� 2
�

8
3
; 8

�

n¹4º. Then the nesting cascade of the quantum lengths of the CLE loops

has the same law as the multiplicative cascadeZ˛ introduced in this article where

˛ is given by (5).

In fact, recent work of Miller, Sheffield, and Werner [36] together with a

different representation of the reproduction law �˛ which can be derived from [4]

yields this statement.

The excluded case ˛ D
3
2
. The methods used in this article should also allow

to treat the boundary case ˛ D 3=2, which corresponds to n D 2 or � D 4,

but additional difficulties arise there. For example, from the point of view of

multiplicative martingales, the Malthusian martingale is not uniformly integrable

anymore and one needs to consider the so-called derivative martingale, which

leads to additional terms in the renormalisation. This will be the subject of future

investigation.
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2. Convergence of the first generation

The goal of this section is to prove the convergence of the first generation of �.p/,

as stated in the following proposition:
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Proposition 2.1. For any 'W `1.N�/ ! R bounded and continuous, we have

EŒ'.p�1�.p/.i/W i � 1/� ����!
p!1

EŒ' .Z˛.i/W i � 1/�:

We will follow the scheme outlined in the introduction, which is summarized in the

following diagram.

loop-decorated

quadrangulation

.q; `/ P
.p/

nIg;h

§2.3.1

p!1

size-biased

Lévy process

gasket

decomposition

§2.1

gasket D bipartite

Boltzmann map

B
.p/
g equation (9)

size-biased

random walk

§2.2.3

pointed bipartite

Boltzmann map

forest of mobiles

(D bicolored trees)

F
.p/

BDG

forest of

uncolored trees

F
.p/

JS

passage bridge

.Xn/1 n Tp

§2.2.1

BDG

(forget labels)

§2.2.2

JS

§2.3.1

Łukasiewicz

B
.p/;
g

Figure 3. A solid arrow A ! B indicates a transformation that encodes A by B . It is a

bijection when the arrow is two-headed. A dashed arrowA Ü B indicates that the random

object B is obtained by size-biasing the law of A. Equation (9) is obtained by composing

all these transformations and size-biasing relations. Using it, we deduce Proposition 2.1

from the classical convergence of random walks to Lévy processes.

2.1. The gasket decomposition. We first recall the gasket decomposition of [13].

Given a loop-decorated quadrangulation .q; `/ 2 Op, let l � 0 be the number of

outer-most loops in `, i.e. loops which can be reached from the boundary of q

without crossing any other loop. The gasket decomposition consists in erasing all

the outer-most loops and all the edges crossed by these loops. This disconnects

the map into l C 1 connected components:

� The gasket is the connected component containing the external face of q. This

is a rooted bipartite planar map (without loops) with a boundary of length 2p.

An internal face of the gasket is either a quadrangular face inherited from q,

or one of the l holes obtained by removing the outer-most loops and their

interior component. Notice that a hole may have a non-simple boundary.

See Figure 4.

� The l remaining connected components are contained in the holes. More

precisely, inside a hole of degree 2p0, we find an element .q0; `0/ 2 Op0 .

To be rigorous, we need to specify a root edge for each internal quadrangulation

.q0; `0/. This can be done in a deterministic way thanks to the lack of automor-

phisms of rooted planar maps. (For example, one can enumerate the edges of q
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Figure 4. Illustration of the gasket decomposition. Notice that after removing the outer-

most loops and their interiors, the holes in the gasket may be non-simple faces, similarly

to the external face. See also [13, Figure 4].

in the depth-first-search order from the root, and choose the first edge in q0 as its

root edge.) Similarly, the holes can also be numbered from 1 to l in a determin-

istic fashion. Therefore, given a bipartite map b of perimeter 2p, a loop deco-

rated quadrangulation .q; `/ that admits b as gasket can be recovered by gluing

a loop-decorated quadrangulation in Ok—wrapped in a “collar” of 2k quadran-

gles traversed by a loop—into each face of b degree 2k (or, if k D 2 we have the

additional possibility of gluing a plain quadrangle), see Figures 3 and 4 in [13].

Then it follows from (1) that the gasket of a loop-decorated quadrangulation of

distributionw.nIg;h/ is distributed according to the so-called g-Boltzmann measure

(see [35]) on bipartite maps defined as

wg.m/ D
Y

f 2Faces.m/n¹frº

gdeg.f /=2;

where in our case the weight sequence g D .gk/k�1 is related to the O.n/ model

by the relations

gk D gık;2 C nh2kFk.nI g; h/; (6)

see [13, Eq. (2.3)]. If the weight sequence g is such that for every p � 1, the total

wg-mass of bipartite maps with perimeter 2p is finite, then the above g-Boltz-

mann measure can be normalized to define a random g-Boltzmann mapB
.p/
g with

perimeter 2p. This is clearly implied in our context by the admissibility of the pa-

rameters .nI g; h/. In the next section, we recall classical codings of Boltzmann

maps (not necessarily related to the gasket of O.n/-decorated quadrangulations)

via random labeled forests.

2.2. Coding of bipartite Boltzmann maps with a boundary. The coding of

bipartite Boltzmann planar maps via the Bouttier–Di Francesco–Guitter (BDG)

bijection [14] and the study of the induced distribution on random planar trees
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has been studied in depth in [35] and more recently in [6]. We shall recall the

necessary background here referring to [6] for details. To present the coding in its

simplest form, we have to deal with pointed planar maps rather than maps.

2.2.1. BDG coding. A pointed map is a map given together with a distinguished

vertex �, chosen independently of the root of the map. Let .m; �/ be a pointed

bipartite map with a boundary of degree 2p. A slight variation [6, Section 3.3] of

the classical BDG bijection in the context of pointed bipartite maps is defined as

follows.

(1) Draw a vertex in each face of m (including the external face). The new

vertices are considered black (�) and the old ones white (ı). Label each white

vertex by its distance to the distinguished vertex �. Since the map is bipartite,

the labels of any two adjacent vertices differ exactly by one.

(2) For a face f of m and a white vertex adjacent to f , link the white vertex

to the black vertex inside f if the next white vertex in the clockwise order

around f has a smaller label.

(3) Remove the edges of m and the vertex �. It can be shown that the resulting

graph is a tree [14].

(4) Let v0 be the black vertex corresponding to the external face of m. By

removing v0 and its adjacent edges, we obtain a forest of cyclically ordered

trees, rooted at the neighbors of v0. Finally, we choose uniformly at random

one of the trees to be the first one, and subtract the labels in all trees by a

constant so that the label of the root vertex of this first tree becomes zero.

With a moment of thought on the Step 2 of the above construction, one observes

that:

i. Each internal face of degree 2k in m gives rise to a black vertex of degree k

in the forest, and the forest is composed of p trees.

ii. Given a black vertex of degree k, the possible labels on its (white) neighbors

are exactly those which, when read in the clockwise order around the black

vertex, can decrease at most by 1 at each step. If the label of one neighbor is

fixed, then there are exactly
�

2k�1
k�1

�

possible labelings of the other neighbors

which satisfy the above constraint [35, Proof of Proposition 7].

A mobile is a rooted plane tree whose vertices at even (resp. odd) generations are

white (resp. black). We say that a forest of mobiles .t1; � � � ; tp/ is well labeled

if (a) the root vertex of t1 has label 0, (b) the labels satisfy the constraint in the

observation (ii) above, and (c) the labels of the roots of t1; � � � ; tp satisfy the similar
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constraint. See [6, Section 6.1] for more details and a construction of the inverse

mapping.

1

C forget labels

2

2

2

2

2

2

1

1

3

3

3

3

4

4

0

0

1 1

2 33 4

4 3 2 3

2 2 1 2

2

Figure 5. Illustration of the construction of a forest of p mobiles from a pointed bipartite

planar map with a boundary of perimeter 2p. The edges of the map are shown in red, and

the edges of the mobiles in black. The first mobile in the forest is not specified by the map

and is chosen uniformly at random among all the mobiles.

Let us now describe the effect of this coding on the Boltzmann measure. Given

a weight sequence g D .gk/k�1, the definition of the g-Boltzmann measure wg

naturally extends to pointed planar maps with the same formula. We suppose as

above that the wg-mass of bipartite maps with a given perimeter is finite. This

implies in particular that the wg-mass of all pointed bipartite maps with a given

perimeter is also finite. (This can be deduced from (3.2) in [13] and its pointed

analogue. See [18, Corollary 23].) In these equivalent cases the weight sequence

g is called admissible. (This should not be confounded with the admissibility of

a triple .n; g; h/. The latter implies that the former when g is defined by (6), but

the inverse is not obvious [16].) Under this assumption we can define a random

bipartite map B
.p/;�
g with a boundary of perimeter 2p by normalizing the above

Boltzmann measure.

If we let F
.p/

BDG be the unlabeled forest of mobiles obtained by applying the

construction 1.–4. to B
.p/;�
g , then it follows from the observations (i) and (ii) that

F
.p/

BDG is also Boltzmann distributed, with a weight 1 for white vertices and a weight

Qgk D
�

2k�1
k�1

�

gk for each black vertex of degree k. More precisely,

P.F
.p/

BDG D f/ /
Y

v2�.f/

Qgdeg.v/:

where �.f/ is the set of black vertices of f, and the probability measure is normal-

ized over all forests of p finite mobiles. It has been shown in [35, Proposition 7]
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that F
.p/

BDG is a two-type Galton–Watson forest whose law is given explicitly in

terms of g. For our purpose (which is proving Proposition 2.1), we could redo the

classical analysis of Galton–Watson trees in this context of multi-type Galton–

Watson trees but we use a much quicker road using a recent trick discovered by

Janson and Stefánsson [29].

2.2.2. Janson and Stefánsson’s trick. In [29, Section 3], Janson and Stefánsson

discovered a mapping which transforms a mobile into a rooted plane tree by

keeping the same set of vertices, but changing the set of edges so that every white

vertex is mapped to a leaf, and every black vertex of degree k is mapped to an

internal vertex with k children. We refer to [19, Section 3.2] for details of this

transformation. The curious reader may have a look at the figure below and try to

guess how the bijection works.

Figure 6. Illustration of the Janson and Stefánsson transformation.

The usefulness of this bijection is that the two-type Galton–Watson trees which

arise from the BDG bijection in the last section are transformed into a (one-type)

Galton–Watson tree. In our setting, let F
.p/

JS be the image of F
.p/

BDG under this

bijection. The next proposition gathers and summarizes [35, Proposition 1] and

[29, Appendix] (see also [19, Proposition 3.6]) in our context:

Proposition 2.2. The weight sequence g D .gk/k�1 is admissible if and only if

the equation on x

'g.x/ WD
X

k�1

Qgkxk D x � 1

has a positive solution. For an admissible g, let Zg be the smallest such solution,

then F
.p/
JS is a forest of p i.i.d. Galton–Watson trees with offspring distribution

�JS.0/ D 1

Zg

and �JS.k/ D QgkZk�1
g .k � 1/: (7)
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With this one can (at last) state the definition of non-generic criticality that

we imposed in this paper (this obviously matches the definition given in [13] and

in [33] for the associated g sequence, see also [18, Section 5.1.3]):

Definition 2.3. A weight sequence g is called critical and non-generic with

exponent ˛ 2 .1; 2/ if the sequence g is admissible for the pointed bipartite map

model and if the offspring distribution �JS is critical (i.e. it has mean one) and

satisfies

�JS.k/ � Ck�˛�1; as k ! 1; for some C > 0:

By extension, a triplet .nI g; h/ with n 2 .0; 2/ and g; h � 0 is called critical and

non-generic if the associated g sequence defined by (6) is critical and non-generic.

Notice in particular that in the above definition �JS.k/ has a polynomial tail.

When the weight sequence g is derived from .nI g; h/ as in (6) this means that the

exponential factors in (3), (6) and (7) must cancel out to leave only the polynomial

part in the asymptotic of �JS.k/, see [13, Section 3.3].

2.2.3. Back to the non-pointed gasket. In the last section, we have recalled the

coding of pointed Boltzmann maps via random trees. To come back to non-pointed

maps, we need to bias the law of the pointed map by the inverse of its number

of vertices. Notice that under the BDG bijection and Janson and Stefánsson’s

mapping, the vertices of B
.p/;�
g , except the distinguished one, are mapped to the

white vertices of F
.p/

BDG, then to the leaves of F
.p/

JS .

To summarize this chain of transformations into one equation, let Deg
#

f
(resp.

Deg
#
� ; Deg

#
out

) denote the sequence of degrees of faces (resp. degrees of black

vertices; numbers of children) in a bipartite map (resp. forest of mobiles; forest

of trees), ranked in the decreasing order and completed by an infinite sequence of

zeros at the end. Recall also that B
.p/
g (resp. B

.p/;�
g ) is a g-Boltzmann map (resp.

pointed map) with a boundary of perimeter 2p. Then for any positive measurable

function 'WNN� ! R we have

E

h

'
�1

2
Deg

#

f
.B.p/

g /
�i

D 1

EŒ1=#Vertex.B
.p/;�
g /�

E

�

'
�

1
2
Deg

#

f
.B

.p/;�
g /

�

#Vertex.B
.p/;�
g /

�

D 1

EŒ1=.1C # ı .F.p/BDG//�
E

�

'.Deg
#
� .F

.p/
BDG//

1C # ı .F.p/BDG/

�

D 1

EŒ1=.1C #Leaf.F
.p/

JS //�
E

�

'.Deg
#
out
.F
.p/

JS //

1C #Leaf.F
.p/

JS /

�

:

(8)

The above chain of equality is valid for any admissible sequence g.
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2.3. Scaling limit of the face degrees in the gasket. The discussion in the

previous section is valid for Boltzmann maps with a general (admissible) weight

sequence, and we now consider a weight sequence g that is derived from a

critical non-generic set of parameters .nI g; h/ with exponent ˛ 2 .1; 2/ and

prove Proposition 2.1 (but the results are valid for any critical non-generic weight

sequence g as those considered in [33], [15], and [18, Section 5.1.3]).

2.3.1. Random walk coding. We now use the well-known random walk coding

of trees and forests to study the right-hand side of (8). Let Sn D X1 C � � �CXn be

a random walk where .Xn/n�1 is an i.i.d. sequence with distribution

P.X1 C 1 D k/ D �JS.k/

for k � 0. Define the first passage time of .Sn/n�0 to the level �p

Tp D inf ¹n � 0 jSn D �pº ;

and let Lp D
PTp
iD1 1¹XiD�1º be the number of negative steps of the walk up

to Tp. Let X.p/ be the sequence .Xn C 1/1�n�Tp ranked in the decreasing order

and completed by infinitely many zeros. The classical coding of forests by their

Łukasiewicz paths shows that the sequenceX.p/ has the same law as Deg
#
out
.F
.p/
JS /

and that jointly we have #Leaf.F
.p/
JS / D Lp in distribution. Therefore (8) can be

continued into

E

h

'
�1

2
Deg

#

f
.B.p/

g /
�i

D 1

EŒ1=.1C #Leaf.F
.p/
JS //�

E

�

'.Deg
#
out
.F
.p/
JS //

1C #Leaf.F
.p/
JS /

�

D 1

EŒ1=.1C Lp/�
E

�

'.X.p//

1C Lp

�

:

(9)

By definition, the first generation of �.p/ is the sequence of half-degrees of

the holes in the gasket, sorted in the decreasing order (multiple holes of the same

degree result in repeated terms in the sequence) and completed with infinitely

many zeros at the end. Recall that the faces of the gasket are either holes or regular

faces of degree 4. Therefore, if g is the weight sequence given by (6), then the first

generation of �.p/ differs from 1
2
Deg

#

f
.B

.p/
g / at most by 2 in the `1.N�/ norm.

From the last display and the fact that Lp � p it follows that, for any bounded

continuous function 'W `1.N�/ ! R, we have

EŒ'.p�1�.p/.i/W i � 1/� D 1

EŒ1=Lp�
E

�

'.p�1 � X.p//
Lp

�

C o.1/: (10)

as p ! 1. With all the reductions we have been through we are now in position

to prove Proposition 2.1.
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Proof of Proposition 2.1. Recall from (7) that the step distribution of the walk S

is supposed by Definition 2.3 to be centered and in the domain of attraction of the

totally asymmetric stable law of parameter ˛. Recall also the notation from the

Introduction and in particular that � is a standard ˛-stable Lévy process with no

negative jumps. We can suppose that � has been normalized so that by a classical

invariance principle we have
�1

n
SŒtn˛�

�

t�0

.d/����!
n!1

.�t /t�0

for the Skorokhod topology. With standard arguments, one can show that the

above convergence in distribution holds jointly with (using the notation of the

Introduction)

p�˛Tp
.d/����!
p!1

� and
1

p
X
.p/ .d/����!

p!1
.��/# (11)

where the second convergence takes place in the `1.N�/ topology. We now give

a lemma controlling Lp via Tp in a precise manner:

Lemma 2.4. There is c > 0 depending only on the weight sequence g, such that

for all " > 0 and p � 1,

P.Tp � "p˛/ � P.Lp � "p˛/ � exp.�c"� 1
˛�1 /; (12)

P

�ˇ

ˇ

ˇ

Lp

Tp
� �JS.0/

ˇ

ˇ

ˇ � p�˛=4
�

� c�1p˛=2 exp.�cpp/; (13)

and

P

� Tp

Lp
� K

�

� c�1 exp.�cKp/: for all K � 2

�JS.0/
: (14)

We finish the proof of Proposition 2.1 given Lemma 2.4. Equation (13)

implies that Lp=Tp converges to �JS.0/ in probability, thus in distribution jointly

with (11). Hence we have

�JS.0/ � p
˛

Lp
'

�

p�1
X
.p/

� .d/����!
p!1

1

�
'

�

.��/#
�

:

On the other hand, (12) implies that the sequence .p˛L�1
p /p�1 is uniformly inte-

grable. Therefore we can take expectations in the last convergence in distribution

and it follows that

EŒL�1
p '.p�1

X
.p//�

EŒL�1
p �

D
�JS.0/ � E.p˛L�1

p '.p�1
X
.p///

�JS.0/ � EŒp˛L�1
p �

����!
p!1

EŒ��1'..��/#/�

EŒ��1�

D EŒ'.Z˛.i/W i � 1/�:

With (9) this finishes the proof of the proposition. �
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Proof of Lemma 2.4. The first inequality in (12) follows from Lp � Tp. For the

second inequality, consider for � > 0 the non-negative martingale

Mn D exp
�

� �Sn �‰.�/
n

X

iD1

1¹XiD�1º

�

where ‰.�/ is defined by the equation E
�

exp.��X1 �‰.�/1¹X1D�1º/
�

D 1, or

explicitly by

‰.�/ D � log
�

1� EŒe��X1� � 1
e�P.X1 D �1/

�

:

By Fatou’s lemma, EŒMTp � D EŒexp.�p � ‰.�/Lp/� � 1. Notice that since

EŒe��X1 � � e��EŒX1� D 1, we always have ‰.�/ � 0 as soon as � > 0. We can

thus apply the Chernoff bound and get

P.Lp � "p˛/ � EŒexp."p˛‰.�/ �‰.�/Lp/� � exp."p˛‰.�/ � �p/: (15)

From our standing assumptions, we know that X1 has the power law tail behavior

P.X1 � x/ � Cx�˛ (x ! 1) and so by standard Abelian theorems its Laplace

transform witnesses the following asymptotic:

EŒe��X1 � D 1C C 0�˛ C o.�˛/:

It follows that ‰.�/ � C 00�˛ as � ! 0. On the other hand, it is easy to see that

‰.�/ � � when � ! 1. Therefore there exists a constant c0 such that ‰.�/ �
c0�˛ for all � > 0. Then (12) follows from (15) by taking � D c00."

1
˛�1p/�1 with

c00 > 0 sufficiently small.

For (13), observe that for all ˇ > 0 and � 2 .0; ˛/,

P

�ˇ

ˇ

ˇ

Lp

Tp
� �JS.0/

ˇ

ˇ

ˇ � p�ˇ˛
�

D
1

X

nD1

P

�
ˇ

ˇ

ˇ

1

n

n
X

iD1

1¹XiD�1º � �JS.0/
ˇ

ˇ

ˇ � p�ˇ˛ and Tp D n
�

� P.Tp < p
�/C

1
X

nDp�

P

�ˇ

ˇ

ˇ

1

n

n
X

iD1

1¹XiD�1º � �JS.0/
ˇ

ˇ

ˇ
� p�ˇ˛

�

.�/
� exp.�cp ˛��

˛�1 /C
1

X

nDp�

2 exp.�Qcnp�2ˇ˛/

� exp.�cp ˛��
˛�1 /C 2 Qc�1p2ˇ˛ exp.�Qcp��2ˇ˛/:
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where for .�/ we used (12) with " D p��˛ and the standard Chernoff bound

for i.i.d. Bernoulli random variables. The constant Qc depends only on �0. We

obtain (13) by taking ˇ D 1=4 and optimizing over � .

For (14), we start by observing that Lp � p, therefore Tp � pK on the

event
®

Tp=Lp � K
¯

. Then using the same arguments as for (13), we get for all

K � 2=�JS.0/,

P

� Tp

Lp
� K

�

D
1

X

nDpK

P

�1

n

n
X

iD1

1¹XiD�1º � K�1 and Tp D n
�

�
1

X

nDpK

exp.�Qc.�JS.0/ �K�1/n/

�
exp

�

�1
2

Qc�JS.0/Kp
�

1 � exp
�

�1
2

Qc�JS.0/
� : �

3. A formula for left-continuous random walks

In this section, we prove Theorem 1.3 and an analogue of it for spectrally positive

Lévy processes.

3.1. Proof of Theorem 1.3. Throughout the section, we denote by

Sn D X1 C � � � CXn

a left-continuous random walk on Z (that is, .Xi /i�1 are i.i.d. with Xi � �1)
and by Tp the hitting time of �p 2 Z by S D .Sn/n�0. In particular we have

STp D �p. The proof of Theorem 1.3 will make a heavy use of Kemperman’s

formula:

P.Tp D n/ D p

n
P.Sn D �p/ for all n � 1 and p � 1:

See e.g. [40, Section 6.1] (where there the notation Sn stands for our Sn � n).

More precisely it follows from [40, Lemma 6.1] that if n � 1 and p � 1, then for

any positive measurable function F.x1; : : : ; xn/ which is invariant under cyclic

permutation of its arguments, we have the extended Kemperman’s formula:

EŒF.X1; � � � ; Xn/1¹TpDnº� D p

n
EŒF.X1; � � � ; Xn/1¹SnD�pº�:
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Proof of Theorem 1.3. Let n � 2. We have

An WD E

h

n
X

iD1

f .Xi /1¹TpDnº

i

(by extended Kemperman’s formula)

D p

n
E

h

n
X

iD1

f .Xi /1¹SnD�pº

i

(by cyclic symmetry)

D pEŒf .X1/1¹SnD�pº�

(by Markov property)

D pE Œf .X1/P.Sn�1 D �p �X1 j X1/�
(by Kemperman’s formula)

D E

h

f .X1/
p

p CX1
.n� 1/P.TpCX1 D n � 1 j X1/

i

:

Since p � 2, we have Tp � 2 and TpCx � 1 almost surely, for every x 2 ¹�1; 0;
1; : : :º. Hence,

E

h 1

Tp � 1

Tp
X

iD1

f .Xi /
i

D
1

X

nD2

An

n� 1

D E

h

f .X1/
p

p CX1

1
X

nD2

P.TpCX1 D n � 1 j X1/
i

D E

h

f .X1/
p

p CX1

i

;

where in the penultimate line we used the fact that Tp < 1 almost surely to deduce

that the sum inside the expectation is equal to 1. This completes the proof of the

theorem. �

The theorem has the following generalization, whose proof is an easy extension

of the above proof and left to the reader.

Proposition 3.1. Suppose that the random walk .Sn/n�0 does not drift to C1.

For m � 1, let f WZm ! RC and gW
S1
jD1Z

j ! RC be symmetric measurable

functions. Then for any p � 1 we have

E

h 1¹Tp>mº

.Tp � 1/ � � � .Tp �m/
X

.i1;:::;im/2A
m
Tp

f .Xi1 ; � � � ; Xim/g..Xj /j…¹i1;:::;imº; j�Tp/
i

D E

h

f .X1; � � � ; Xm/
p1¹Tp>mº

p CX1 C � � � CXm
EŒg..X 0

j /j�Tq /�jqDpCX1C���CXm

i

;
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whereAmTp is the set of all orderedm-tuples of distinct elements (m-arrangements)

from ¹1; � � � ; Tpº and .X 0
n/n�1 is an independent copy of the sequence .Xn/n�1.

3.2. Passing to the limit: an analogous formula for Lévy processes. Let now

.�t /t�0 be a Lévy process with no negative jumps started from �0 D 0. Denote by

�.dx/ its Lévy measure (supported onRC) and by � the hitting time of �1. Denote

by��t WD �t��t� the size of the jump at time t . The sum or product over all jump

times t up to the time � will simply be denoted by
P

t�� or
Q

t�� , respectively.

The following two results are analogues of Theorem 1.3 and Proposition 3.1 for

the Lévy process .�t /t�0.

Proposition 3.2. Suppose that � < 1 almost surely. Let f WR�
C ! R be non-

negative, measurable and such that f .0/ D 0. Then we have

E

h1

�

X

t��

f .��t /
i

D
Z

f .x/
1

1C x
�.dx/:

Proposition 3.3. Suppose that � < 1 almost surely. Form � 1, let f WRmC ! RC

be symmetric measurable and gWRC ! RC be measurable functions. Then,

E

h 1

�m

X0
f .��t1 ; � � � ; ��tm/

Y

t��;t…¹t1;:::;tmº

g.��t /
i

D
Z

� � �
Z

f .x1; : : : ; xm/
1

1C x1 C � � � C xm

E

h

Y

t��y

g.��t /
iˇ

ˇ

ˇ

yD1Cx1C���Cxm
�.dx1/ � � ��.dxm/;

where the sum
P0

is over all ordered m-tuples .t1; : : : ; tm/ of distinct elements

from the set of jump times up to � , and �y is the hitting time of the level �y.

Remark 3.4. Notice that, somehow surprisingly, the drift and the Brownian

component of the Lévy process do not appear explicitly in the result (as long as

the Lévy process does not drift to 1). However, they do affect the distribution of

� and of the jumps until time � .

We only prove Proposition 3.2, the proof of Proposition 3.3 is a straightforward

generalization.
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Proof of Proposition 3.2. We could of course adapt the proof of Theorem 1.3 to

the current setting (in the spirit of [5]) however, we find it shorter to simply argue

by approximation. Let S
.n/

k
D X

.n/
1 C � � � CX

.n/

k
be a sequence of left-continuous

random walks and .an/n�0 a sequence of positive integers, such that

.a�1
n S

.n/

bntc
/t�0

.d/����!
n!1

.�t /t�0 (16)

in distribution in the Skorokhod topology. (The existence of such random walks

can be deduced from classical approximation results for Lévy processes, see e.g.

[30, Theorem 14.14].) In particular this means that nP.X
.n/
1 � xan/ ! �..x;1//

for all x which is not an atom of � . Note also that it is always possible to perform

such an approximation in such a way that the walk S .n/ does not drift towards 1.

For any continuous function f on R
�
C with compact support, we then have (the

equality .�/ is justified just below)

E

h1

�

X

t��

f .��t /
i

.�/D lim
n!1

E

h n

Tan

Tan
X

iD1

f .a�1
n X

.n/
i /

i

Thm. 1.3D lim
n!1

nE
h

f .a�1
n X1/

an

an CX1

i

D
Z

f .x/
1

1C x
�.dx/:

The statement then follows by a monotone class argument. In order to justify .�/
one can first invoke the Skorokhod embedding theorem and assume that (16) holds

almost surely. It then follows from standard arguments that

n

Tan

Tan
X

iD1

f .a�1
n X

.n/
i / �! 1

�

X

t��

f .��t /

in distribution as n ! 1. It thus remains to prove uniform integrability in order to

allow convergence of the expectations. Without loss of generality, we can assume

that f is supported in Œ1;1/ and bounded by 1, that is, f � 1¹x�1º. Define

N
.n/

k
D #¹1 � i � kWX .n/i � anº;

then we can write

E

h� n

Tan

Tan
X

iD1

f .a�1
n X

.n/
i /

�2i

� E

h� n

Tan
N
.n/
Tan

�2i

� E

h� n

Tan
N .n/
n

�2

1¹Tan�nº

i

C
h�

sup
k�n

n

k
N
.n/

k

�2i

:
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Since P.X
.n/
1 � an/ is of order 1=n, we can choose � large enough so that

P.X
.n/
1 � an/ � 1 � exp.��=n/ for all n. Then the process .N

.n/

k
/k�1 is

stochastically bounded by .Yk=n/k�1, where Y is a standard Poisson process of

intensity �. Easy estimates show that EŒ.supt�1 t
�1Yt /

2� < 1, which gives a

uniform bound to the second term on the right-hand side of the last display. For

the first term, we apply Cauchy–Schwarz inequality to get that

E

h� n

Tan
N .n/
n

�2

1¹Tan�nº

i

�
�

EŒY 41 � � E
h� n

Tan

�4

1¹Tan�nº

i�1=2

:

Using estimates similar to those of Lemma 2.4 we deduce that the expectation

E
��

n
Tan

�4
1¹Tan�nº

�

is bounded uniformly in n. Gathering the estimates we deduce

that E
��

n
Tan

PTan
iD1 f .a

�1
n X

.n/
i /

�2�
is bounded uniformly in n. This gives the

desired uniform integrability. �

4. Properties of the limiting multiplicative cascade

In this section, we examine in detail the multiplicative cascade Z˛ defined in the

introduction. The most important quantity of a multiplicative cascade, which de-

termines much of its asymptotic behavior, is the Biggins transform. We calculate

this transform in Section 4.1, relying on the formula for Lévy processes proved in

the previous section (Proposition 3.2). This allows to define additive martingales

which we make explicit. We also calculate the Legendre–Fenchel transform of

the (log-)Biggins transform, which describes the asymptotic growth of the multi-

plicative cascade. In Section 4.2, we show that the Malthusian martingale of the

multiplicative cascade is uniformly integrable and calculate the law of its limit.

We conjecture this law to be the asymptotic law of the renormalized volume of

the O.n/-decorated quadrangulations considered in this paper. Finally, in Sec-

tion 4.3, we study Lp-convergence of the additive martingales.

The results in Sections 4.2 and 4.3 are not used in the proof of the main

convergence theorem but we believe them to be of intrinsic interest and of possible

later use.

4.1. The Biggins transform and additive martingales. In this section we prove

the formula for the Biggins transform of the measure �˛ (see Figure 7 for a plot

for different values of ˛):

�˛.�/ D E

h

1
X

iD1

.Z˛.i//
�
i

D sin.�.2� ˛//
sin.�.� � ˛// for � 2 .˛; ˛ C 1/: (17)
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1.0 1.5 2.0 2.5 3.0

0.0

0.5
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1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

Figure 7. The various functions �˛.�/ for ˛ D 1:1; 1:2; : : : ; 1:9, and the line y D 1

(dashed).

Proof of (17). We use Proposition 3.2 when � D � is a spectrally positive ˛-stable

Lévy process for ˛ 2 .1; 2/. In this case recall that we have EŒe��� � D exp.C�˛/

and the Lévy measure of � is equal to

�.dx/ D C

�.�˛/
dx

x˛C1
1.x>0/:

Applying the above-mentioned proposition we deduce that

E

h1

�

X

t��

.��t /
�
i

D
Z

x�

1C x
�.dx/ D C

�.�˛/

1
Z

0

x��˛�1

x C 1
dx

D

8

ˆ

<

ˆ

:

C�

�.�˛/ sin.�.� � ˛// if � 2 .˛; ˛ C 1/;

C1 otherwise.

For the last equality, see e.g. [24, 6.2(3)]. Moreover, it is classical (see e.g. [3,

Chapter VII, Theorem 1]) that for � � 0 we have EŒe��� � D e�.�=C/1=˛ and so

EŒ1=�� D E

�

1
Z

0

e���d�

�

D
1

Z

0

e�.�=C/1=˛d� D C�.1C ˛/: (18)



560 L. Chen, N. Curien, and P. Maillard

Combining the last two displays with Euler’s reflection formula we indeed com-

pute the Biggins transform of the measure �˛ as promised

E
�

1
�

P

t�� .��t /
�
�

E
�

1
�

� D

8

ˆ

<

ˆ

:

sin.�.2� ˛//

sin.�.� � ˛// if � 2 .˛; ˛ C 1/;

C1 otherwise.

We see that the above result does not depend on the normalizing constant C

appearing in the definition of �. As we already remarked in the introduction, this

can more directly be seen using a scaling argument to show that the law of �˛ is

independent of C . �

Additive martingales. Consider the following family of processes, indexed by

� 2 .˛; ˛ C 1/,

Wn.˛; �/ D �˛.�/
�n

X

uWjujDn

.Z˛.u//
� : (19)

It is well known and easy to show that each of these processes is a non-negative

martingale with respect to the �-field Fn D �.Z˛.u/; juj � n/. Since for each

n 2 N,Wn.˛; �/ is an additive functional of .Z˛.u//jujDn, they are also called (the)

additive martingales of the multiplicative cascade Z˛ . Of special importance is

the so-called Malthusian martingale corresponding to the Malthusian parameter

�˛ which is the smaller solution of the equation �˛.�/ D 1. One easily checks

that for ˛ 2 .1; 2/n¹3=2º, there are exactly two solutions to this equation, namely

2 and 2˛ � 1, and so the Malthusian parameter equals

�˛ D min.2; 2˛ � 1/ D
´

2 if ˛ > 3
2

(dilute case),

2˛ � 1 if ˛ < 3
2

(dense case).
(20)

In particular we deduce that for � 2 Œmin.2; 2˛� 1/;max.2; 2˛� 1/�, which is

a non-empty interval as soon as ˛ ¤ 3
2
, the multiplicative cascade Z˛ satisfies

E

h

X

u2U

.Z˛.u//
�
i

D
1

X

kD0

.�˛.�//
k < 1;

in particular .Z˛/ belongs to `� .U/ almost surely.
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In Section 4.2, we prove that the Malthusian martingale .Wn.˛; �˛//n�0 is

uniformly integrable and identify the law of the limit. We also explain why

this limit law should give the scaling limit of the volume of the O.n/-decorated

quadrangulation with a boundary. In Section 4.3, we provide moment bounds

on W1.˛; �/, which allow to prove convergence in Lp of Wn.˛; �/ for suitable p

and � .

Remark 4.1. In the critical case ˛ D 3
2
—which we do not consider in this paper—

the equation �3=2.�/ D 1 has only one solution � D 2. It is well known that in this

case, the martingale Wn.˛; 2/ converges to 0 almost surely, but one can still get a

non-trivial limit either by considering the so-called derivative martingale [32] or

by renormalizing the martingale Wn.˛; 2/ appropriately [1], the two approaches

leading to the same result.

For completeness, we note that the Legendre–Fenchel transform of log�˛ can

also be explicitly evaluated (we leave the calculation to the reader). This allows

to determine the asymptotic growth of the multiplicative cascade, see Biggins [8]

for further details.

Proposition 4.2. Let arccot be the branch of the arccotangent taking values in

.0; �/. For x 2 R,

.log �˛/
�.x/ WD sup

�2R

¹�x � log �˛.�/º

D ˛x C x

�
arccot

�

� x

�

�

� 1
2

log
�

1C x2

�2

�

� log sin.�.2� ˛//:
(21)

This function is strictly increasing and its (unique) root is negative if ˛ ¤ 3
2

and

0 if ˛ D 3
2
.

4.2. The volume of the map: the law of the Malthusian martingale limit.

Recall the definition of the modified Bessel function of the third kind K� (also

called Macdonald function), see e.g. [23, Section 7.2.2]:

K�.z/ D �

2 sin.��/
.I��.z/ � I�.z//

D �.�/�.1 � �/
2

X

nD0

1

nŠ

h .z=2/2n��

�.n � � C 1/
� .z=2/2nC�

�.nC � C 1/

i

:

(22)

Recall that ˛ 2 .1; 2/n
®

3
2

¯

throughout the paper. Define for every � > 0,

 ˛;� .x/ D 2

�
�

˛ � 1
2

�x.˛�1=2/=�K˛�1=2.2x
1=� /:
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Then  ˛;� .0/ D 1 for all ˛ and � , by (22). Note that  ˛;� .x/ D  ˛;� 0.x�
0=� / for

every � 0; � > 0. Also recall the formula [23, 7.12.23]

 ˛;� .x/ D  ˛;2.x
2=� / D 1

�
�

˛ � 1
2

�

1
Z

0

e�x2=�y�1=yy�.˛C1=2/ dy: (23)

In particular,  ˛;2 is the Laplace transform of the inverse-Gamma distribution

with parameters ˛ � 1
2

and 1. The following theorem identifies the law of the

Malthusian martingale limit in terms of the function  ˛;� :

Theorem 4.3 (law of the Malthusian martingale limit). The Malthusian martig-

nale .Wn.˛; �˛//n�0 is uniformly integrable for all ˛ 2 .1; 2/ n
®

3
2

¯

. Its limit

W1.˛; �˛/ has the following Laplace transform: In the dilute case .˛ > 3
2
/,

EŒe�xW1.˛;2/� D  ˛;2

��

˛ � 3

2

�

x
�

;

that is, W1.˛; 2/ follows the inverse-Gamma distribution with parameters ˛ � 1
2

and ˛ � 3
2
. In the dense case .˛ < 3

2
/,

EŒe�xW1.˛;2˛�1/� D  ˛;2˛�1

��.˛ C 1=2/

�.3=2� ˛/ x
�

:

Remark 4.4. Let V.p/ be the volume (i.e. number of vertices) of the loop-

decorated quadrangulation distributed according to P
.p/

nIg;h
. We expectW1.˛; �˛/

to be the scaling limit of V.p/, more precisely,

p��˛V.p/ ����!
p!1

ƒ �W1.˛; �˛/ (24)

for some constant ƒ > 0. To see why, let us consider xVn.p/, the expectation

of V.p/ conditionally on the part of the loop-decorated quadrangulation outside

the loops of generation n. In particular xV0.p/ DW xV.p/ is the (unconditional)

expectation of V.p/. Clearly, . xVn.p//n�0 is a uniformly integrable martingale

that converges to V.p/.

Actually, xVn.p/ is the discrete counterpart of the Malthusian martingale

Wn.˛; �˛/. According to a result of Timothy Budd (Theorem A), xV.p/ � ƒp�˛

as p ! 1. Combining this with estimates on the volume of the gasket, it can

be shown that the volume outside the loops of generation n is negligible, hence
xVn.p/ �

P

jujDn
xV.�.p/u / � ƒ �

P

jujDn.�
.p/
u /�˛ . In addition, the scaling limit

of the perimeter cascade (Theorem 1.1) gives �
.p/
u � pZ˛.u/. It follows that

xVn.p/ � p�˛ƒ �
P

jujDnZ˛.u/
�˛ D p�˛ƒ � Wn.˛; �˛/. Then, taking the limit

n ! 1 on both sides suggests (24).
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The above heuristics can be turned into a rigorous proof if we assume that the

family .p��˛V.p//p�0 is uniformly integrable.

Remark 4.5. The inverse-Gamma distribution is known to appear as the limiting

law of the volume of planar maps decorated by statistical physics models in

the dilute case. Even in the dense case, the Laplace transform  ˛;2˛�1 has

implicitly appeared in the physics literature in the same context as this paper [31,

equation (2.5)] (we are grateful to Timothy Budd for showing this to us, this helped

us find the right law!). Note that Theorem 4.3 shows in particular that if ˛ 2
�

1; 3
2

�

,

the function  ˛;2˛�1 is the Laplace transform of a probability distribution, which

is not obvious a priori and for which we do not have a direct proof. In particular,

we do not have an explicit expression of its density. However, this probability

distribution is related to the Laplace transform of the inverse-Gamma distribution

of parameter ˛ � 1
2

by the subordination relation

 ˛;2.x/ D  ˛;2˛�1.x
˛�1=2/:

Remark 4.6. In order to show uniform integrability of additive martingales, one

usually uses a famous result of Biggins, later improved by Lyons [34], which states

that the martingale Wn.˛; �/ is uniformly integrable if

�.log �˛/
0.�/ < log�˛.�/ and EŒW1.˛; �/ logC.W1.˛; �//� < 1;

where log.x/ is the natural logarithm and logC.x/ WD max.0; log.x//. Otherwise,

Wn.˛; �/ converges almost surely to 0. Our proof of uniform integrability bypasses

this result.

The main part of the proof of Theorem 4.3 is the following Lemma 4.7,

which identifies the function  ˛;� as the solution to a certain functional equation.

Together with a general result on multiplicative cascades (Proposition 4.8 below),

this will readily imply the theorem.

Lemma 4.7. For every ˛ 2 .1; 2/, � > 0, the function  ˛;� satisfies the equation

 ˛;� .x/ D E

h

1
Y

iD1

 ˛;� .xZ˛.i/
�/

i

.x > 0/;  .0/ D 1: (25)

Proof. It is enough to prove the formula for � D 1, by the relation  ˛;� .x/ D
 ˛;1.x

1=� /, x > 0. We therefore assume � D 1 from now on and write  WD  ˛;1.

We start by expressing the right-hand side of (25) in terms of the jumps of an

˛-stable Lévy process. Let .�t /t�0 be an ˛-stable Lévy process with no negative
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jumps started at 0, more precisely we assume that its cumulant is given by

logEŒe���1� D
1

Z

0

.e��x � 1C �x/
1

x˛C1
dx: (26)

Let � denote the hitting time of �1 of �. Then (25) reads,

 .x/ D c˛E
h1

�

Y

t<�

 .x��t /
i

; c˛ WD
�

E

h1

�

i��1

; (27)

where the product is over all jump times t less than � . By (18) and Euler’s

reflection formula,

c˛ D �sin.�˛/

�
D sin.�.˛ � 1//

�
: (28)

In order to prove (27), we transform it successively into a series of equivalent

equations (using certain properties and representations of  ). First derive with

respect to x, which gives by the product formula,

 0.x/ D c˛E
h1

�

X

t<�

.��t / 
0.x��t /

Y

s<�; s¤t

 .x��s/
i

;

where the differentiation inside the expectation is justified by the monotonicity

of , see (23). Since .0/ D 1 by the same identity, the above equation is therefore

equivalent to (27). By Proposition 3.3, we can further express it as follows:

 0.x/ D c˛

1
Z

0

dy

y˛C1
y 0.xy/

1

1C y
E

h

Y

t<�

 .x��t /
i1Cy

: (29)

In order to calculate the expectation on the right-hand side of (29), we use the

fact that the functional
�
Q

t<�  .���t/
�

induces a change of measure of the Lévy

process �, which turns it into a non-conservative Lévy process, i.e. a Lévy process

with killing. More precisely, define the subprobability measure P ;x by

E ;xŒHt � D E

h

Ht

Y

s<t

 .x��s/
i

;

for every �..�s/0�s�t /-measurable bounded random variable Ht . It is a standard

fact that under P ;x , the process � is again a Lévy process with cumulant � ;x

given by

� ;x.�/ D
1

Z

0

.e��y .xy/ � 1C �y/
1

y˛C1
dy: (30)
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It follows from the definition of � ;x that it is a continuous, strictly increasing

function on Œ0;1/. We may thus define its inverse ��1
 ;x on Œ� ;x.0/;1/. Note that

� ;x.0/ � 0, so in particular, ��1
 ;x.0/ is well defined. The following is well known:

E

h

Y

t<�

 .x��t /
i

D E ;x Œ1� D e���1
 ;x

.0/: (31)

By (31), we can express (29) equivalently as

 0.x/ D c˛

1
Z

0

dy

y˛
 0.xy/

1

1C y
e�.1Cy/��1

 ;x.0/: (32)

Until now, we have only used the monotonicity of and the fact that .0/ D 1.

We now show that (29) is an identity for our particular choice of  . For this

function, it turns out that ��1
 ;x.0/ D 2x, or, equivalently, � ;x.2x/ D 0, as can

be easily checked by elementary computations, using the formula (23) (or by a

computer algebra software). Equation (32) then becomes

 0.x/ D c˛

1
Z

0

dy

y˛
 0.xy/

1

1C y
e�2x.1Cy/:

Changing variables y 7! y=x in the integral, this equation becomes

 0.x/ D c˛e
�2xx˛

1
Z

0

dy

y˛
 0.y/

1

x C y
e�2y : (33)

Recall that  .x/ D C˛x
˛�1=2K˛�1=2.2x/ for some C˛ > 0. Then  0.x/ D

�2C˛x˛�1=2K˛�3=2.2x/ [23, 7.11(21)]. Using this identity, (33) is equivalent to

e2x
K˛�3=2.2x/p

x
D c˛

1
Z

0

1

x C y
e�2yK˛�3=2.2y/p

y
dy;

or, equivalently,

ex=2K˛�3=2.x=2/p
x

D c˛

1
Z

0

1

x C y
e�y e

y=2K˛�3=2.y=2/p
y

dy: (34)

Recall c˛ D sin.�.˛ � 1//=� D sin
�

�
��

˛ � 3
2

�

C 1
2

��

=� . Equation (34) is then

a special case of a known identity for Whittaker functions, see e.g. [20, p335] or

[39, 13.16.6]. This finishes the proof of the lemma. �
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The following proposition is a general result on multiplicative cascades, for

which we provide a proof for completeness. Although results of this flavor are

omnipresent in the literature and its proof idea, using multiplicative martingales,

is by now standard, we could not find a suitable reference in the literature working

under our minimal assumptions.

Proposition 4.8. Let .Zu/u be a multiplicative cascade with Z; D 1. Suppose

that E
�
P1
iD1Zi

�

D 1. Furthermore, suppose there exists a measurable function

�WRC ! Œ0; 1� satisfying �.0/ D 1, 1� �.x/ � x as x ! 0, and

�.x/ D E

h

1
Y

iD1

�.xZi /
i

for all x � 0:

Then the martingale Wn D
P

jujDnZu is uniformly integrable and its limiting

random variable has Laplace transform �.

Proof. We first note that .Wn/n�0 is a non-negative martingale and thus converges

a.s. to a limit W1. It is easy to show that this implies that maxjujDnZu ! 0 a.s.,

as n ! 1.

Now introduce for every x � 0 the processMn.x/ D
Q

jujDn �.xZu/, n � 0. It

is well known and easy to show that for every x � 0, .Mn.x//n�0 is a martingale,

called a multiplicative martingale associated to the multiplicative cascade .Zu/u.

It takes values in Œ0; 1� and therefore converges a.s. and in L1 to a limit M1.x/.

Furthermore, since 1 � �.x/ � x as x ! 0 by assumption and maxjujDnZu ! 0

a.s., as n ! 1,

logM1.x/ D lim
n!1

X

jujDn

log�.xZu/ D lim
n!1

X

jujDn

.�xZu/ D �xW1:

This shows that for every x � 0,

�.x/ D M0.x/ D EŒM1.x/� D EŒe�xW1�;

Hence, � is the Laplace transform of W1. Moreover, since 1 � �.x/ � x as

x ! 0, the random variable W1 has unit expectation. Scheffé’s lemma then

gives thatWn converges in L1 to W1, hence the martingale .Wn/n�0 is uniformly

integrable. �

Proof of Theorem 4.3. By Lemma 4.7 and Proposition 4.8, it suffices to show

that 1 �  ˛;2.x/ � x=
�

˛ � 3
2

�

as x ! 0 if ˛ > 3
2
, and 1 �  ˛;2˛�1.x/ �

�

�
�

3
2

� ˛
�

=�
�

˛ C 1
2

��

x as x ! 0 if ˛ < 3
2
. But this is an easy consequence

of (22), noting that the second-order term as z ! 0 is the n D 1 term of the first

sum if ˛ > 3
2

(� > 1), whereas it is the n D 0 term of the second sum if ˛ < 3
2

(� < 1). �
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4.3. Lp-convergence of the additive martingales. The additive martingales

introduced in Section 4.1 are important observables of the multiplicative cascade

Z˛ . Although it is not used in the proof of the main result of this article, it is

vital to know that they do not display pathological behavior. This is ensured by

the following proposition, which we include for completeness:

Proposition 4.9. Let p > 1 and � 2 .˛; ˛ C 1/ be such that log �˛.p�/ <

p log�˛.�/. Then the martingale .Wn.˛; �//n�0 converges in Lp.

The proposition will follow from classical results once the following lemma is

established:

Lemma 4.10. Let � 2 .˛; ˛ C 1/. Then,

E Œ.W1.˛; �//
p� < 1 for every p < .˛ C 1/=�:

Proof of Proposition 4.9. Let p and � as in the statement of the proposition.

A classical result by Biggins [9, Theorem 1] then gives the required convergence,

provided E Œ.W1.˛; �//
p� < 1. But by the hypothesis on p and � , we necessarily

have p� < ˛ C 1, since �˛.�/ D C1 for � � ˛ C 1. Lemma 4.10 then implies

the result. �

Proof of Lemma 4.10. Throughout the proof, we denote by C and C" arbitrary

positive, finite constants, whose values may change from line to line. They may

depend on ˛ and the constant C" may furthermore depend on " > 0 introduced

later. Recall the definition of the multiplicative cascade in terms of a spectrally

positive ˛-stable Lévy process �. It is well known that � , the hitting time of

�1 by �, is a positive 1
˛

-stable random variable. We collect some well-known

estimates on its density, see e.g. [43, Chapter 2.5]:

P.� 2 dt/ � C t�1=˛�1; t ! 1 (35)

P.� 2 dt/ D exp.�.1C o.1//t�1=˛�1/; t ! 0: (36)

We now bound the tail of W1.˛; �/. Let x 7! tx, RC ! RC be an arbitrary

function for the moment, whose value we will choose later on. Then, for all x � 0,

P.W1.˛; �/ > x/ D CE

h1

�
1P

s�� .��s/
�>x

i

D CE

h1

�
1P

s�� .��s/
�>x; �>tx

i

C CE

h1

�
1P

s�� .��s/
�>x; ��tx

i

:

(37)
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By (35), we bound the first summand on the right-hand side of (37) for large x by

E

h1

�
1P

s�� .��s/
�>x; �>tx

i

� E

h1

�
1�>tx

i

� C.tx/
�.1=˛C1/: (38)

As for the second summand, we use Hölder’s inequality to get for every " > 0,

E

h1

�
1P

s�� .��s/
�>x; ��tx

i

� E

h 1

�1="

i"

P

�

X

s��

.��s/
� > x; � � tx

�1�"

: (39)

By (36),

E

h 1

�1="

i"

� C": (40)

We continue with bounding the probability on the right-hand side in (39). Since

� is ˛-stable, there is a constant � 2 .0; 1/, such that P.�s � 0/ D � for all s � 0.

Applying this with the Markov property at time � , we get

�P
�

X

s��

.��s/
� > x; � � tx

�

D P

�

X

s�tx

.��s/
� > x; � � tx; �tx � �1

�

� P

�

X

s�tx

.��s/
� > x; max

s��
.��s/

� � ıx
�

C P.max
s�tx

.��s/
� > ıx; �tx � �1/;

where ı is some small positive constant. Classical large-deviation estimates for

sums of iid heavy-tailed random variables [38] yield that the first term on the

right-hand side is for large x smaller than any fixed polynomial in x as long as

tx � x˛=��" and ı is sufficiently small. As for the second term on the right-hand

side, denote by Q� a process defined as �, except that all the jumps greater than

.ıx/1=� are suppressed. Then, by independence of the large and small jumps,

P.max
s�tx

.��s/
� > ıx; �tx � �1/ � P.�Q�tx � .ıx/1=� /:

One easily checks that as x ! 1, jEŒ Q�tx �j � txC.ıx/
�.˛�1/=� D o.ıx/1=� / as long

as tx D o.x˛=� /. Hence, the event in the above probability is a large deviation

event. By the finiteness of the moment generating function of �Q� for positive

values of the argument, the Chernoff bound easily implies that the probability

P.�Q�tx � .ıx/1=�/ decays streched exponentially in x, as long as tx � x˛=��".

Summarizing the previous arguments, the probability

P

�

X

s��

.��s/
� > x; � � tx

�
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decreases superpolynomially in x as long as tx � x˛=��". Together with (37)–(40),

we have for every " > 0, for large x,

P.W1.˛; �/ > x/ � C".tx/
�.1=˛C1/;

as long as tx � x˛=��". Choosing tx to be equal to this bound, this gives for every

" > 0, for large x, P.W1.˛; �/ > x/ � C"x
�.1C˛/=�C": This readily implies the

statement of the lemma. �

5. Convergence towards the continuous multiplicative cascade

In this section we prove our main convergence result, Theorem 1.1. We do it step

by step in order to emphasize the different requirements for the different types of

convergence.

5.1. Finite dimensional convergence

Proposition 5.1 (finite dimensional convergence). With the notation of Theo-

rem 1.1 we have the following convergence in distribution in the sense of finite-

dimensional marginals

.p�1�.p/.u/Wu 2 U/
.d/����!
p!1

.Z˛.u/Wu 2 U/:

Proof. This is a more or less straightforward corollary of the convergence of

the first generation (Proposition 2.1) together with the Markov property in the

gasket decomposition. Recall the notation of the introduction and in particular

�.p/.¿/ D p, recall also that .�
.u/
i W i � 1/u2U are independent random vectors

distributed according to �˛ and indexed by U. Fix k0 � 1. It follows from

Proposition 2.1 that we have

� �.p/.i/

�.p/.¿/

�

1�i�k0

.d/����!
p!1

.�
.u/
i /1�i�k0 :

Now, it follows from the gasket decomposition that conditionally on the perime-

ters .�.p/.i/W 1 � i � k0/ of the first generation of the loops, the loop-decorated

quadrangulations filling in the first k0 holes (ranked in decreasing order of their

perimeters) in the gasket are independent and distributed according to P
�.p/.i/

.nIg;h/
.
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Since we have �.p/.k0/ ! 1 in probability (indeed 1
p
�.p/.k0/ ! Z˛.k0/ in

distribution and Z˛.k0/ > 0 almost surely) we can then apply Proposition 2.1

once more to these second generation quadrangulations to deduce that

��.p/.ij /

�.p/.i/

�

1�j�k0

.d/����!
p!1

.�
.i/
j /1�j�k0 ;

and these convergences in law hold jointly for all i 2 ¿ [ ¹1; 2; : : : ; k0º. Iterating

the above argument we get that for any finite subtree t � U containing the root and

for any vertex u; ui 2 t we have the joint convergences �.p/.ui/=�.p/.u/ ! �
.u/
i

in distribution. This implies the finite dimensional convergence. �

5.2. `1 convergence generation by generation. In this section we strengthen

Proposition 5.1 into a convergence in `1 for any finite number of generations.

Indeed, the convergence of Proposition 5.1 does not prevent �.p/ from having

�.p/.u/ � p at some vertex u ! 1 (i.e. u leaves any fixed finite subset of U) as

p ! 1. The following statement shows that this is impossible if the height of u

stays bounded. For any k � 1 let Uk be subtree of the first k generations in U.

Proposition 5.2. For any k � 1we have the following convergence in distribution

in `� .Uk/ for all � > ˛

.p�1�.p/.u/Wu 2 Uk/
.d/����!
p!1

.Z˛.u/Wu 2 Uk/:

As it will turn out, the last proposition is a consequence of the finite-dimen-

sional convergence (Proposition 5.1) together with a convergence in mean of the

sum of powers in the cascade. More precisely we will use:

Lemma 5.3. For any � 2 .˛; ˛ C 1/ and for any k � 1,

E

h

X

u2UWjujDk

.p�1�.p/.u//�
i

����!
p!1

E

h

X

u2UWjujDk

.Z˛.u//
�
i

D �˛.�/
k :

Proof. We prove the convergence by induction on k � 1. Using the notation of

Section 2.3.1 and in particular (9) as well as (10) we have

E

h

X

jujDk

.p�1�.p/.u//�
i

� 1

E
�

1
Lp

�E

h 1

Lp

X

1�i�Tp

�Xi C 1

p

��i

CO.p�1/:
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The inequality comes from the fact that some faces (of degree four) of the gasket

are not holes surrounded by a loop and the O.p�1/ from the approximation

Lp � Lp C 1. (Recall that p � Lp � Tp.) By Fatou’s lemma the right-hand side

in Lemma 5.3 is less than the liminf of the left-hand side. Therefore it suffices to

prove that the right-hand side in the last display converges towards �˛.�/. This

will be shown using Theorem 1.3 and the approximation

�JS.0/
1

Lp

Tp
X

iD1

�Xi C 1

p

��

� U .�/p WD 1

Tp

Tp
X

iD1

�Xi C 1

p

��

: (41)

Indeed since Tp � p, by Theorem 1.3 we can write

EŒU .�/p � D E

h 1

Tp � 1

Tp
X

iD1

�Xi C 1

p

��i

� .1CO.p�1//

D E

h�X1 C 1

p

�� p

p CX1

i

� .1CO.p�1//:

Recall that p˛P.X1 � xp/ ! �.Œx;1// where �.dx/ D Cx�˛�1=�.�˛/1¹x>0º

is the Lévy measure of the ˛-stable Lévy process �. As in the proof of Proposi-

tion 3.2, we can use dominated convergence to get that

p˛ � EŒU .�/p � ����!
p!1

Z

x�

1C x
�.dx/ D E

h1

�

X

t��

.��t /
�
i

:

We have already seen in the proof of Theorem 2.1 that p˛ � E
��JS.0/
Lp

�

! E
�

1
�

�

.

Provided that the approximation (41) holds in expectation with an error of order

o.p�˛/, we can gather the pieces and indeed deduce the desired convergence for

k D 1 by the calculation done in Section 4.1.

To justify (41), for our fixed � 2 .˛; ˛C1/, let 
; 
 0 > 1 be such that 
� < ˛C1
and 1



C 1


 0 D 1, then

ˇ

ˇ

ˇE

h

�JS.0/ � Tp
Lp
U .�/p

i

� EŒU .�/p �
ˇ

ˇ

ˇ � E

hˇ

ˇ

ˇ�JS.0/
Tp

Lp
� 1

ˇ

ˇ

ˇ � U .�/p

i

(Hölder’s inequality)

� E

hˇ

ˇ

ˇ�JS.0/
Tp

Lp
� 1

ˇ

ˇ

ˇ


 0i 1

 0 � EŒ.U .�/p /
 �

1



(Jensen’s inequality)

� E

hˇ

ˇ

ˇ�JS.0/
Tp

Lp
� 1

ˇ

ˇ

ˇ


 0i 1

 0 � EŒU .
�/p �

1

 :
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The large deviation bound (13) and (14) imply that EŒj�JS.0/Tp=Lp � 1j
 0

� tends

to 0 faster than p�˛
 0=4 as p ! 1. On the other hand, the above calculation shows

that EŒU
.
�/
p � is of order p�˛. Hence the right-hand side of the last display is of

order o.p�˛=4�˛=
/. By choosing 
 close enough to 1 this can be made smaller

than p�˛. This justifies our approximation (41).

Now assume that the convergence of the lemma takes place up to the k-th

generation and write

Gk.p/ D E

h

X

jujDk

.p�1�.p/.u//�
i

;

to simplify notation. Then there exists a constantC DC.k; �/ such thatGk.p/�C
for all p � 1, and for any " > 0 there exists p0 such that for all p � p0,

Gk.p/ � �˛.�/
k C ":

Using the Markov property of the gasket decomposition at the first generation we

get with the above two inequalities, for all p � 1,

GkC1.p/ D E

h

1
X

iD1

��.p/.i/

p

��

Gk.�
.p/.i//

i

� .�˛.�/
k C "/E

h

1
X

iD1

��.p/.i/

p

��

1¹�.p/.i/�p0º

i

C CE

h

1
X

iD1

��.p/.i/

p

��

1¹�.p/.i/<p0º

i

:

By the k D 1 case, the first term on the right-hand side is bounded using

E

h

1
X

iD1

��.p/.i/

p

��

1¹�.p/.i/�p0º

i

� E

h

1
X

iD1

��.p/.i/

p

��i

����!
p!1

�˛.�/:

As for the second term, fix � 0 2 .˛; �/ then for p � p0 we can write

E

h

1
X

iD1

��.p/.i/

p

��

1¹�.p/.i/<p0º

i

�
�p0

p

���� 0

E

h

1
X

iD1

��.p/.i/

p

�� 0i

����!
p!1

0;

by the k D 1 case proven above (with � replaced by � 0). Taking the limits p ! 1
and then " ! 0, we get the upper bound

lim sup
p!1

GkC1.p/ � �˛.�/
kC1;

whereas the lower bound lim infp!1GkC1.p/ � �˛.�/
kC1 is trivial from the

finite-dimensional convergence together with Fatou’s lemma. �
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Proof of Proposition 5.2. Since the identity function �W `� .Uk/ ! `�
0

.Uk/ is con-

tinuous for all � � � 0, it suffices to prove the convergence in distribution for all �

close enough to ˛. Fix � 2 .˛; ˛ C 1/ and k � 1. Since

E

h

X

u2Uk

.Z˛.u//
�
i

D 1C �˛.�/C � � � C �˛.�/
k < 1;

for any " > 0 there is a finite subset V � Uk such that

E

h

X

u2UknV

.Z˛.u//
�
i

< "� :

According to the convergence in Lemma 5.3, we have

lim sup
p!1

E

h

X

u2UknV

.p�1�.p/.u//�
i

� "� : (42)

Now if f W `� .Uk/ ! RC is a bounded K-Lipschitz function we have

jE Œf .Z˛/�� E Œf .Z˛1V /� j � K � EŒjZ˛ � Z˛1V j� �
Hölder

� K �
�

E

�

X

u2UknV

.Z˛.u//
� /

�1=�

� K � ";

and similarly EŒf .p�1�.p//� � EŒf .p�1�.p/1V /� up to an error of order " as

p ! 1. From the finite-dimensional convergence (Proposition 5.1) we deduce

that EŒf .p�1�.p/1V /� ! E Œf .Z˛1V /� as p ! 1. Put all together this shows

EŒf .p�1�.p//� ! E Œf .Z˛/� as p ! 1 and proves the desired convergence in

distribution. �

5.3. `1 convergence. As we have already noticed, Proposition 5.2 implies the

convergence of p�1�.p/ �! Z˛ in `1.Uk/. However, it does not yet yield the

full convergence in `1.U/ and the missing estimate is of the form: for any " > 0,

there exists an integer k such that

lim sup
p!1

P.9u 2 U n UkW�.p/.u/ � "p/ � ": (43)

In other words, the labels beyond generation k are uniformly small when k is large.

Notice that if we had replaced p�1�.p/ by the limiting cascade Z˛ , the estimate

would be immediate: by the remark after (20), the process .Z˛/ almost surely
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belongs to `� .U/ for a certain � > 0. Our way to prove (43) is similar as in the

continuous case and we want to find a supermartingale of the form
�

X

jujDk

f .�.p/.u//
�

k�0
;

where f is an increasing function. The underlying quadrangulation model pro-

vides us naturally one such supermartingale: for p � 1, let xV.p/ be the expected

volume (i.e. number of vertices) of a random loop-decorated quadrangulation of

distribution P
.p/

nIg;h
. Then the gasket decomposition (Section 2.1) immediately

shows that we have the strict inequality for all p:

E

h

1
X

iD1

xV.�.p/.i//
i

< xV.p/: (44)

In particular,
�

P

jujDk
xV.�.p/.u//; k � 0

�

is indeed a supermartingale for the dis-

crete cascade. Timothy Budd recently proved the following asymptotics of xV.p/.

Theorem A ([16]). For a set of non-generic critical parameters .nI g; h/,

xV.p/ �
p�!1

ƒp�˛ ;

where �˛ D max.2˛ � 1; 2/ and ƒ > 0 is some constant depending on .nI g; h/.

With this estimate, one can proceed to the proof of Theorem 1.1.

Proof of the `1.U/ convergence. Recall that we assume n < 2, so that ˛ ¤ 3
2

and

inf �˛ < 1. Choose � such that �˛.�/ < 1. Then by Lemma 5.3, there exist finite

constants C , p0 and c < 1 such that

E

h

1
X

iD1

.p�1�.p/.i//�
i

�
´

C for all p � 1;

c for all p � p0:
(45)

Now let us deduce from this inequality that the �-moment decreases exponentially

as long as the labels do not drop below p0 too often. To make this idea precise,

for u 2 U let N0.u/ be the number of ancestors of u which have a label smaller

than p0. The following lemma controls the size of �.p/.u/ depending on whether

N0.u/ is smaller or greater than a threshold m.

Lemma 5.4. (1) With the constants C; c given in (45),

E

�

X

u2UWjujDk

��.p/.u/

p

��

1¹N0.u/�mº

i

� Cmck�m for all k � m � 0: (46)
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(2) Consider the set of vertices Lm D inf¹u 2 UWN0.u/ � mº where the

infimum of a subset U � U is defined by

inf U D ¹u 2 U Wu has no ancestor in U º:

Then there exists Qc < 1 such that for all p and m,

E

h

X

u2Lm

xV.�.p/.u//
i

� Qcm�1 xV.p/: (47)

Summing (46) over l > k gives

E

h

X

u2UnUk

��.p/.u/

p

��

1¹N0.u/�mº

i

: �
X

l>k

Cmck�m D
�C

c

�m ckC1

1 � c :

By Markov’s inequality, the previous display and (47) imply respectively

P.9u 2 U n UkWN0.u/ � m and �.p/.u/ � "p/ � "��
�C

c

�m ckC1

1� c

and

P.9u 2 UWN0.u/ > m and �.p/.u/ � "p/ D P.9u 2 LmW�.p/.u/ � "p/

� Qcm
xV.p/
xV."p/

:

Take the sum of the two inequalities and use the regular variation of xV to show

that

lim sup
p!1

P.9u 2 U n Uk W�.p/.u/ � "p/ � "��
�C

c

�m ckC1

1 � c C Qcm"��˛ :

The right-hand side tends to zero when k;m ! 1 under the constraint

k

m
� logC � log c

� log c
C ":

This proves the bound (43) and the `1.U/ convergence in Theorem 1.1 modulo

Lemma 5.4. �

Proof of Lemma 5.4. We prove the bound (46) by induction on k. We write

Mk;m.p/ D E

h

X

u2UWjujDk

��.p/.u/

p

��

1¹N0.u/�mº

i

to simplify notation. In the case k D 1 (and m 2 ¹0; 1º) the only ancestor of the

first generation is the root and the estimate follows from (45). If k � 1, then we

have the following case.
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� If p � p0, then for all i � 1 and u 2 U, we have N0.iu/ D N
.i/
0 .u/, where

N
.i/
0 is a copy of the functionN0 defined on the sub-tree rooted at the vertex i .

It follows that

MkC1;m.p/ D E

h

1
X

iD1

��.p/.i/

p

�� X

u2UWjujDk

��.p/.iu/

�.p/.i/

��

1
¹N
.i/
0
.u/�mº

i

(Markov property of the cascade)

D E

h

1
X

iD1

��.p/.i/

p

��

Mk;m.�
.p/.i//

i

(induction hypothesis)

� Cmck�m
E

h

1
X

iD1

�

p�1�.p/.i/
��i

� CmckC1�m:

� If p < p0, then N0.iu/ D N
.i/
0 .u/C 1 and hence for m � 1,

MkC1;m.p/ D E

h

1
X

iD1

��.p/.i/

p

��

Mk;m�1.�
.p/.i//

i

� Cm�1ck�.m�1/
E

h

1
X

iD1

.p�1�.p/.i//�
i

� CmckC1�m:

For m D 0, we have MkC1;0.p/ D 0 since p < p0. This completes the

induction.

Let us move to the second point of the lemma. To show (47), first remark

that (44) implies the existence of a constant Qc < 1 such that

E

h

1
X

iD1

xV.�.p/.i//
i

� Qc xV.p/ (48)

for all p � p0. To simplify notation, we will write yV .U / D E
�
P

u2U
xV.�.p/.u//

�

for any subset U � U.

For k � 1, let Lk D inf¹u 2 UWN0.u/ � kº and LC
k

D ¹ui Wu 2 Lk; i 2 N
�º

(LC
k

is the set of children of Lk). From the definition of N0.:/ it is not hard to see

that �.p/.u/ � p0 for all u 2 Lk . The random sets Lk, L
C
k

are so-called optional

lines for the filtration generated by the process �.p/ (see e.g. [10]) and we have

¹¿º D L0 � LC
0 � L1 � LC

1 � L2 � LC
2 � L3 � � � �
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where we used the partial order on the subsets of U defined by U � zU if each

vertex u 2 zU either is in U or has an ancestor in U . On the one hand, by general

theory on optional lines, if L � L0 are two optional lines then yV .L/ � yV .L0/. On

the other hand, since �.p/.u/ � p0 for all u 2 Lk we can use (48) to deduce that

yV .LC
k
/ D E

h

X

u2Lk

xV.�.p/.u// � E
h

1
X

iD1

xV.�.q/.i//
xV.q/

i

qD�.p/.u/

i

� Qc yV .Lk/:

Gathering the two inequalities we indeed deduce that LmC1 � Qcm yV .L0/ D
Qcm xV.p/; as desired. �

Appendix A. Relation with other nesting statistics

In this section, we outline the relation of our work to the recent work by Borot,

Bouttier and Duplantier [11] about the number of loops surrounding a typical

vertex in an O.n/-decorated random planar map and to analogous quantities in

conformal loop ensembles.

Number of loops surrounding a typical vertex in the O.n/-decorated quad-

rangulation. We consider a random pointed quadrangulation of (large) perime-

ter p decorated with an O.n/ loop model, as defined in the introduction of the

main text. Borot, Bouttier and Duplantier [11] have studied the large deviations

of the number of loops surrounding the marked vertex, by methods from analytic

combinatorics. With our notation, their result reads as follows:

Theorem B ([11], Theorem 2.2). Let N denote the number of loops surrounding

the marked vertex. Then, for all x > 0, as p ! 1,

1

logp
logP.N D bx logpc/ �! � 1

�
J.�x/;

where

J.x/ D x log
�2

n

xp
1C x2

�

C arccot.x/ � arccos
�n

2

�

:

In fact, the result in [11] is more precise in that the authors actually give an

asymptotic equivalent for P.N D bx logpc/. Also note that there is a mistake in

the definition of the function J in [11] (the first x factor is missing).
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We now sketch how we can heuristically recover this result from the continuous

multiplicative cascade Z˛ of Theorem 1.1. Let ı > 0 be a small constant. We

define Lı to be the set of those vertices u in the Ulam tree for which Z˛.u/ < ı

and Z˛.v/ � ı for every ancestor v of u. (Lı is an optional line, see the proof

of Lemma 5.4.) In the discrete setting, these vertices correspond to loops in

an O.n/-decorated quadrangulation of perimeter p whose perimeter is smaller

than ıp, but the loops surrounding them have perimeter larger than ıp.

Similarly to the definition of the martingale Wn.˛; �/ in (19) we now define

W ı.˛; �/ D
X

u2Lı

Z˛.u/
��˛.�/

�juj;

where as usual, juj denotes the generation of a vertex u in the Ulam tree. One can

then show (for example with the methods from [10]) that EŒW ı.˛; �/� D 1 for

every � 2 .˛; argmin� �˛.�// D
�

˛; ˛ C 1
2

�

.

As a consequence, we have for such � ,

1 D EŒW ı.˛; �/� D E

h

X

u2L

Z˛.u/
��˛.�/

�juj
i

� ı�E
h

X

u2Lı

�˛.�/
�juj

i

:

Now, as said before, everyu 2 Lı roughly corresponds to a loop in theO.n/model

of perimeter ıp and juj is then the number of loops surrounding it. Assuming we

could take ı D 1
p

this suggests that

E

h

X

v

�˛.�/
�N.v/

i

� p� ; � 2
�

˛; ˛ C 1

2

�

; (49)

where the sum is on the vertices of the loop-decorated quadrangulation and N.v/

is the number of loops separating the vertex v from the outerface.

We now write (49) in a different form in order to link it to Theorem B. First

recall from Section 4.2 (or Theorem A) that the volume of the O.n/-decorated

quandrangulation scales as p�0 , where �0 D min.2; 2˛�1/. Equation (49) is then

equivalent to

EŒ�˛.�/
�N � � p���0; � 2

�

˛; ˛ C 1

2

�

;

where N , as in Theorem B, is now the number of loops surrounding the marked

vertex in a pointed O.n/-decorated quadrangulation. This allows to express the

moment generating function of N by

EŒe�N � � p�˛.�/; (50)

where �˛.�/ D ��1
˛ .e��/ � �0, with ��1

˛ the inverse of the restriction of �˛ to
�

˛; ˛ C 1
2

�

and � < � log min� �˛.�/.
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Now, (4) gives sin.�.2�˛// D n
2

and �0 �˛ D ��1 arcsin
�

n
2

�

, so that we can

express �˛ by

�˛.�/ D 1

�

�

arcsin
�n

2
e�

�

� arcsin
�n

2

��

D 1

�

�

arccos
�n

2

�

� arccos
�n

2
e�

��

for � < log
�2

n

�

(51)

and

�˛.�/ D C1 for � > log
�2

n

�

;

by convexity.

Equation (50) now suggests that for every x > 0, as p ! 1,

1

logp
logP.N D bx logpc/ �! ���

˛ .x/;

where ��
˛ .x/ D sup�2R¹�x � �˛.x/º is the Legendre–Fenchel transform of the

function �˛ . Using the explicit expression in (51), a simple calculation shows:

��
˛ .x/ D 1

�
J.�x/; x > 0;

where J is the function from Theorem B. This establishes (again, heuristically)

that theorem.

Number of loops in a conformal loop ensemble surrounding a small Eu-

clidean ball. We now show how one can heuristically relate (49) to a similar

statement for the number of loops in a conformal loop ensemble in the unit disk

surrounding a small Euclidean ball, thereby recovering (again heuristically) a re-

sult by Miller, Watson and Wilson [37]. The argument is similar to the one by

Borot, Bouttier and Duplantier [11]. Recall from the introduction that it is con-

jectured that in an O.n/-decorated quadrangulation with a boundary, the volume

measure together with the loops converges in some sense to the so-called Liouville

quantum disk (with parameter 
 D p
�) together with an independent CLE� in the

disk, where � is related to our parameter ˛ by ˛ � 3
2

D 4
�

� 1 (see (5)). For sim-

plicity, we restrict ourselves to the dilute case (˛ > 3
2

or 8
3
< � < 4). The result

from [37] is the following. Let zNr denote the number of CLE� loops surrounding

a fixed Euclidean ball of radius r � 1. Then [37],

EŒ �.�/
� zNr � � r�� ; (52)

where

 �.�/ D
� cos

�

4�
�

�

cos
�

�

q

�

1 � 4
�

�2 � 8�
�

�

D
cos

�

�
�

˛ � 3
2

��

cos
�

�

q

�

˛ � 3
2

�2 � �.2˛ � 1/
�

: (53)
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This function appeared already in [41]. Note that we can express it as

 �.�/ D �˛

�

1C 4

�
�

r

�

1 � 4

�

�2

� 8�

�

�

; (54)

where �˛ is the Biggins transform of the multiplicative cascade Z˛ .

Here is an explanation for the relation (54). Denote by �� the Liouville quan-

tum gravity measure in the disk. We can then discretize the disk into blocks of

��-mass approximately ı2, for example by a dyadic decomposition as in [22].

Such a block is then the analogue of a vertex of the O.n/-decorated quadrangula-

tion of perimeter p, with ı D 1
p

(recall that in the dilute phase, the volume scales

like the perimeter squared).

For each c > 0, denote by �ı;ı1=c the number of blocks of diameter approxi-

mately ı1=c. It is implicit in [22] that

�ı;ı1=c � ı�2C 2
c�
.c�.1��=4//2 : (55)

For each block b, denote by zN.b/ the number of CLE loops surrounding the block.

Equations (52) and (55) suggest that

E

h

X

b

 �.�/
� zN.b/

i

� sup
c>0

�ı;ı1=2c � EŒ �.�/
� zN

ı1=c �

� sup
c>0

ı�2C 2
c�
.c�.1��=4//2� �

c :

A simple calculation shows that

inf
c>0

2

c�

�

c �
�

1 � �

4

��2

� �

c
D 1� 4

�
C

r

�

1 � 4

�

�2

� 8�

�
;

for � small enough. This gives

E

h

X

b

 �.�/
� zN.b/

i

� ı�1� 4
�

C
p
.1�4=�/2�8�=� : (56)

On the other hand, by (49) we expect that

E

h

X

b

��. Q�/� zN.b/
i

� ı� Q� ; (57)

for Q� 2
�

˛; ˛ C 1
2

�

. Comparing (56) and (57) suggests that  �.�/ D �˛. Q�/ if �

and Q� are related through

Q� D 1C 4

�
�

r

�

1� 4

�

�2

� 8�

�
:

This readily implies (54).
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