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The perimeter cascade
in critical Boltzmann quadrangulations
decorated by an O(n) loop model

Linxiao Chen, Nicolas Curien, and Pascal Maillard

Abstract. We study the branching tree of the perimeters of the nested loops in the non-
generic critical O(n) model on random quadrangulations. We prove that after renormal-
ization it converges towards an explicit continuous multiplicative cascade whose offspring
distribution (x;),; > is related to the jumps of a spectrally positive «-stable Lévy process
with o = % + % arccos(n/2) and for which we have the surprisingly simple and explicit
transform in(r(2— o))
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An important ingredient in the proof is a new formula of independent interest on first mo-
ments of additive functionals of the jumps of a left-continuous random walk stopped at a
hitting time. We also identify the scaling limit of the volume of the critical O (n)-decorated
quadrangulation using the Malthusian martingale associated to the continuous multiplica-
tive cascade.
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1. Introduction

We build on the work by Borot, Bouttier, and Guitter [13] on critical Boltzmann
quadrangulations decorated by an O(n) loop model. Among other things, they
showed that the so-called gasket associated to a critical O(n)-decorated random
Boltzmann quadrangulation is for a certain choice of parameters a non-generic
critical Boltzmann map, in the sense that the face weights have a polynomial
decay k=% with @ = 2 & Larccos(%). In this work we analyze in detail the
nested sequence of the perimeters of the loops and show that it converges towards
an explicit multiplicative cascade related to a stable Lévy process with index
a=a— % To properly state our results, let us first recall the setup of [13].

Definition of the loop model. In the terminology of [13] we work with the rigid
O(n) loop model on quadrangulations. Recall that in a rooted planar map m, the
face f; to the right of the root edge is called the roof face or the external face (the
other faces being internal faces). Its degree is called the perimeter of the map.
A quadrangulation with a boundary is a rooted planar map q whose internal faces
all have degree four. A (rigid) loop configuration on a quadrangulation with a
boundary is a set £ = {{1,£5,...} of disjoint undirected simple closed paths in
the dual map which do not visit the external face, and with the additional constraint
that when a loop visits a face of q it must cross it through opposite edges. In other
words, the internal faces of q can only be of the following two types

1

see Figure 1. The pair (g, £) will henceforth be called a loop-decorated quandran-
gulation with a boundary.

Givenn € (0,2), g > 0 and & > 0, we define a measure w on the set of all
loop-decorated quadrangulations with a boundary by putting

Winsg i ((q, £)) = glal=I¢plél,# (1)

where |q| is the number of inner faces of g, || is the total length of the loops of £
and #¢ is the number of loops in £. For example, the weight of the quadrangulation
presented in Figure 1 is g8138n°. We denote by O, the set of all loop-decorated
quadrangulations with a boundary whose external face has degree 2 p and put

Fp(n:g.h) = > Wg.m((a.2)). 2)

(9,8)€0p
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Figure 1. Left: a loop-decorated quadrangulation with a boundary of perimeter 24. Top
right: the topological representation of the quadrangulation as a “cactus” which highlights
the nesting of the loops. Bottom right: the nesting tree labeled by the half-perimeters of
the loops.

If F,(n; g, h) is finite (it is not hard to see that the finiteness does not depend
on the value of p > 1) the set of parameters (n; g, k) is said admissible and we
can define the normalized probability distribution on O,:

(p) W(nsg,h) ()
P ) = g
n;g,h() Fp(l’l;g, h)

For large p, the geometry of a random map distributed according to ]Pi’.’z, 5 de-

pends heavily on the parameters (n; g, 1). Borot, Bouttier, and Guitter [13] have
classified this set of parameters into three categories called subcritical, generic
critical or non-generic critical, see Figure 2.

In the subcritical case, roughly speaking the random maps distributed accord-
ing to ]P,(f;’z,’ , are tree-like for large p and are expected to converge in the scaling
limit towards Aldous’ CRT. In the generic critical case, they are believed to be-
have as standard quadrangulations with a boundary and should converge towards
the Brownian disk [6]. In the non-generic critical case however, the geometry of
these maps remains elusive and the only available information we have is on their
gasket [33], see Section 2.1 for the definition. In particular, in this regime we have
the asymptotic

—00

Fp(nig.h) ~ CkPp==1/2, 3)
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inadmissible

generic
critical
a=2

(dilute)
subcritical
a=1

Figure 2. Phase diagram of the loop-decorated quadrangulation model [13, 16] for a given
value of n € (0,2) (the diagram is qualitatively the same for all such n). For every
admissible set of parameters (n; g, 1), the asymptotic form (3) holds. The different phases
are characterized by different values of the exponent «. The critical line separates the sub-
critical region (below) and the inadmissible region (above).

for some C > 0, x > 0 and where the exponent « satisfies

3 1 n 3
=24 Laeos (Z) e aon ). 4
o 5 narccos 5 (1,2)\ 5 4
Here, the sign depends on the parameters g and /, see Figure 2. The case
a = 2 — Larccos (%) € (1.3) is called the dense case because in a suitable

scaling limit, the loops are believed to touch themselves and each other, whereas
in the dilute case @ = 2 + 1 arccos (4) € (3.2) they are believed to be simple
and not to touch each other.

To be precise, the work [13] must be completed by [16, Appendix] in order
to have a fully rigorous proof of the above phase diagram and in particular of the
existence of non-generic critical parameter (n; g, /).

Nota Bene. In the rest of the paper we assume we are given a non-generic critical
set of parameters (n; g, h) withn € (0,2) and h, g > 0 in the sense of Definition 2.3
below—in particular (3) holds for a value of o € (1, %) U (% 2) that is fixed in the
rest of the paper. We shall sometimes drop the implicit dependence in (n; g, h) in
what follows.
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Discrete and continuous cascades. We are interested in the perimeters and the
nesting structure of the loops in a random loop-decorated quadrangulation dis-
tributed according to IPE,’: ) ¢.n) A8 P — 00. If (g, £) is a loop-decorated quadrangu-
lation with a boundary of perimeter 2 p, we can associate with it a random labeled
tree as follows. We start with the so-called Ulam tree

U= Javy.
n>0

Here and throughout we use French notation, i.e. N = {0,1,2,...} and N* =
IN\{0} and set (IN*)® = {@}. If u, v € U we write uv for the concatenation of u
and v, and we write |u| = k if u is s vertex in the k-th generation, i.e. u € (IN*)¥.
Then we assign each loop £ € £ to a vertex of U in the following fashion. First, the
root vertex & of U is associated with an imaginary loop of length 2 p surrounding
the boundary of g. Next we assign to the children 1,2, 3,--- of & the outer-most
loops of (g, £)—i.e. those loops which can be reached from the boundary of ¢
without crossing any other loop—ranked by decreasing perimeter (if there is a
tie we break it using a deterministic rule). We then continue genealogically inside
each of these loops in the most obvious way, see Figure 1. Although U is an infinite
(even non locally finite) tree, the set of vertices attached to a loop of £ is a finite
subtree of U. Once this is done, we define the labeling

yuelUr— y(u) eN

which is the half-perimeter of the loop associated to u in (q, £) or O if there are no
such loop. (Recall that the loops all have even perimeter because q is bipartite.)

We now introduce the limiting continuous multiplicative cascade. Given a
distribution v on (R4)N", let {(‘i:i(u))izl: u € U} be an i.i.d. family of (infinite)
random vectors of law v. The multiplicative cascade with offspring distribution
v is then the random process (Z(u))yeu indexed by the Ulam tree such that
Z(@) = l and such thatforany u € Uandanyi € IN* we have Z(ui) = Z(u)-Ei(").
We will apply this to a particular law v. Let ({;);>0 be an a-stable Lévy process
with no negative jumps started at 0; in other words for some constant C > 0 we
have E[exp(—A¢;)] = exp(CtA%) for all A > 0. Let ¢ denote the hitting time of
—1 of this process. Notice that t < oo a.s. because { does not drift to infinity, and
we have {; = —1 since ¢ has no negative jumps. We write (Al;)i for the infinite
vector consisting of the sizes of the jumps of { before time 7, ranked in decreasing
order. Then we define a probability distribution v, on (R4+)N" by

E[LF((AD)Y)]

/dva(x)F(x): E[l] .
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By the scaling property of stable Lévy processes, the above definition of v, does
not depend on the constant C > 0 appearing in the normalization of ¢.

We also define the function ¢y (6) = E [Zi>1(Za @i ))9], which we call the
Biggins transform of the multiplicative cascade Z, after the seminal work of
Biggins [7]. (Notice that the sum in the expectation runs on the first generating of
the multiplicative cascade Z,.) We can now state our main result:

Theorem 1.1 (convergence of the perimeter cascade). Recall that the set of
parameters (n; g, h) is non-generic critical. Let yP be the random labeling on
the Ulam tree when the underlying loop-decorated quadrangulation is distributed
according to lPEf:;) 2.h)" Then we have the following convergence in distribution

1 d)
— (P W)uere ——= (Za(u))ueu
p p—>0o0
in £° (W), where Z, is the multiplicative cascade with offspring distribution vy,.
In addition, the Biggins transform of the multiplicative cascade Z, is explicit and
equals
sin(w (2 — «))
$a(9) = 3 sin((0 —a))

00 otherwise.

for0 € (a,a + 1),

Remark 1.2. Here £°°(U) is defined as usual as the set of bounded functions
on the countable set U, endowed with the supremum norm. The above conver-
gence is much stronger than the convergence of finite dimensional marginals,
i.e. the weak convergence under the product topology of RY. Roughly speak-
ing, £°°(U) convergence implies that that there are no microscopic loops at some
generation which contain macroscopic loops at a next generation. This is needed
in particular to ensure that the convergence is preserved under relabelling of the
loops. For example, if we consider the auxiliary process (77 (1,1))nen,ien+
where 7P)(n, i) is the half-perimeter of the i-th largest loop at the n-th genera-
tion, then the finite dimensional convergence of (p~! x‘?) (1)), ey would not be
enough to imply finite dimensional convergence of ( p_l)?(l’) (n,1))nen,ien*, but
£2°(U) convergence does imply it (and furthermore implies £°°(U) convergence

of (P~ 7P (1, 1))nen, ien+).

Properties of the multiplicative cascade Z,. In Section 4 we establish some
interesting properties of the multiplicative cascade Z,. First, in Section 4.1,
we define the family of additive martingales, an important observable of the
multiplicative cascade. We also calculate the rate function of the multiplicative
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cascade, i.e. the Legendre—Fenchel transform of log ¢. In Section 4.2, we study
the Malthusian martingale

Z (Z(x (u))min(2,2(x—1) .

[ul=n

We show that it is uniformly integrable and identify the law of its limit to be equal
to (in the dilute phase o > %) or related to (in the dense phase @ < 3/2) an inverse-
Gamma distribution with explicit parameters. As explained there, one can prove
that this distribution is the scaling limit of the volume of a critical O(n)-deco-
rated map with a boundary, assuming that the family of renormalized volumes is
uniformly integrable. Finally, in Section 4.3, we establish L?-convergence of the
additive martingales, for suitable p. This ensures that the multiplicative cascade
Zy displays no pathological behavior.

We now outline the proof of Theorem 1.1, which comes in three parts.

Convergence of finite dimensional marginals. It is proved in [13] that a loop-
decorated quadrangulation (q, £) distributed according to ]ngl’;)g, iy can be split into
its gasket—the part of g outside the outer-most loops of £—and a number of
smaller loop-decorated quadrangulations. Moreover, conditionally on the gasket,
the smaller loop-decorated quadrangulations are independent and follow the same
type of distribution as (q,£). This settles the Markovian branching structure
of the perimeter process y(?, thus reducing the problem of convergence of its
finite dimensional marginals essentially to the convergence of its first generation
(Proposition 2.1).

It is also shown in [13] that the gasket is a bipartite Boltzmann map with a
boundary where each face of degree 2k receives a weight gz (which is a sim-
ple function of Fy(n; g, h), see (6)). This random map model (more precisely,
the pointed version of it, see below) has been introduced in [35] and studied
under these hypotheses in [33]. Applying (a variant of) the classical Bouttier—
Di Francesco—Guitter bijection [14], the (pointed) gasket is coded by a two-type
Galton—Watson forest. The latter can be further simplified by applying a bijection
of Janson and Stefinsson [29] that transforms it into a one-type Galton—Watson
forest, which under our assumption consists of p i.i.d. Galton—Watson trees with
a critical offspring distribution in the domain of attraction of the spectrally pos-
itive a-stable distribution. In this coding, the loops of the first generation are
transformed into the (large) faces of the gasket and then into the (large) jumps
of the Lukasiewicz path encoding the one-type Galton—Watson forest. The lat-
ter naturally converges to the jumps of an «-stable Lévy process, which explains
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the appearance of the process (AC)i in the definition of v,. The above chain of
transformations is summarized in a diagram at the beginning of Section 2.

One technical issue in this program is that the Bouttier—Di Francesco—Guitter
bijection works particularly well with pointed maps, i.e. maps with a distinguished
vertex. For this reason we start by applying the bijections to the pointed gasket,
and only remove the distinguished point afterwards. This amounts to biasing the
pointed gasket by the inverse of its number of vertices, which in the continuous
setting give rise to the bias ™! in the definition of the measure vy.

A formula for left-continuous random walks. As we saw in Theorem 1.1, the
multiplicative cascade Z, has an explicit and rather simple Biggins transform.
This formula is obtained through a new simple identity about the (biased) first
moment of some additive functionals of left-continuous random walks. This
identity may have further applications and so we present it here. Let S be a left-
continuous random walk on Z started from O, i.e. S, = X; + -+ + X,,, where
(X;)i>1 are ii.d. random variables on {—1,0, 1,---}. We denote by T}, the hitting
time of —p € Z by S.

Theorem 1.3. Suppose that S does not drift to oo i.e. that Ty < oo almost surely.
Then for any positive measurable function f:7Z. — R and any p > 2,

- féf(x,-)] = e[

From finite dimensional to £>°(U) convergence. We now explain how we
strengthen the finite-dimensional convergence of p~! y(?) towards Z, to £>°(U)
convergence (see the remark after Theorem 1.1 for why this is important). One
essentially needs that, with high probability, p~!¥(?) is arbitrarily small outside
a finite subset of U, uniformly in p.

We first concentrate on the first k generations of the tree U. Using the identity
in Theorem 1.3, we compute E[ 3", (p~" ‘7 (u))?], the discrete analogue of
Biggins transform, and show that it converges to the k-th power of the continuous
Biggins transform given in Theorem 1.1 (Lemma 5.3). This yields a moment
estimate on the sizes of all the loops up to generation k, which implies the £*°
convergence on the first k generations (Proposition 5.2). In order to strengthen
this to £>°(Ul) convergence, we rely on a geometric estimate on random planar
maps: if we denote by V(p) the expected volume (i.e. number of vertices) of a

random loop-decorated quadrangulation under the distribution ]Pff,’z, 5> then using
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the Markovian structure of the gasket decomposition it is easy to check that

Z V(x'? (u)) is a supermartingale indexed by k > 0,
|u|=k

which gives a uniform control over all generations. This additional ingredient
together with recent estimates on V' (p) due to Budd [16] are at the core of our
proof of the £°° convergence.

Related works. Understanding the geometry of planar maps decorated with a
statistical physics model in one of the major goals in today’s theory of random
planar maps (see [42, 26, 27, 28, 2, 17, 25] for recent progresses on the geometry
of general random planar maps decorated by a Fortuin—Kasteleyn model). Our
interest in the nested cascades in O(n) model on random quadrangulations was
triggered by the recent work of Borot, Bouttier and Duplantier [11]. They study
(in the case of triangulations) in great detail the number of loops separating the
boundary from a typical point; in our context, this roughly speaking consists in
estimating the length of a typical branch of the tree coded by the cascade (y?).
Our perspective here is different since we study the full nested tree (rather than
one branch) in a scaling limit point of view (rather than in the discrete setting). In
Appendix A we provide more details of the relation between the two approaches.
We also give an alternative explanation of the relation with the statistics of the
number of loops surrounding a small Euclidean ball in a conformal loop ensemble.

This work obviously builds upon [13] where the gasket decomposition was
introduced and used to study the phase diagram of Figure 2. Our study of the
gasket in the non-generic critical case also borrows a lot from [33] and indeed the
law v, can be interpreted as the sizes of large faces in what would be a “stable map
with a boundary”. See also [15] for a geometric study of the duals of the above
planar maps.

It was recently shown by Gwynne and Sun [28] that random planar maps
decorated with a Fortuin—Kasteleyn statistical mechanics model (which naturally
defines an ensemble of loops) converge in the so-called peanosphere topology to
the Liouville quantum sphere introduced by Duplantier, Miller and Sheffield [21],
together with an independent conformal loop ensemble. This topology allows in
particular to measure the lengths of the loops in the “quantum metric”, as well
as the “quantum volume” of their interior. A well-known conjecture stipulates
that the O(n)-decorated quadrangulations considered in this paper converge to
the Liouville quantum disk with parameter y = /min(x, 16/k), also introduced
in [21], together with an independent CLE, in the disk. Here, x € (8/3,8) is
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related to our parameter « by
3
a—5:4//<—1, )

so that « € (8/3,8)\{4}. In fact, our Theorem 1.1 has an analogue in the
continuum, which we formulate as follows:
Consider a Liouville quantum disk with parameter y = {/min (K, %) conditioned
on having quantum boundary lengt 1 and an independent CLE, in the disk, with
K € (% 8)\{4}. Then the nesting cascade of the quantum lengths of the CLE loops
has the same law as the multiplicative cascade Z,, introduced in this article where
« is given by (5).

In fact, recent work of Miller, Sheffield, and Werner [36] together with a
different representation of the reproduction law v, which can be derived from [4]
yields this statement.

The excluded case a = % The methods used in this article should also allow
to treat the boundary case « = 3/2, which corresponds ton = 2 or k = 4,
but additional difficulties arise there. For example, from the point of view of
multiplicative martingales, the Malthusian martingale is not uniformly integrable
anymore and one needs to consider the so-called derivative martingale, which
leads to additional terms in the renormalisation. This will be the subject of future
investigation.

Acknowledgments. We thank the Newton Institute for its hospitality during the
“Random Geometry” program in 2015 where this work started. We acknowledge
also the support of Agence Nationale de la Recherche via the grants ANR Liou-
ville (ANR-15-CE40-0013), ANR GRAAL (ANR-14-CE25-0014) and ANR Car-
taplus (ANR-12-JS02-001-01). We thank Gagtan Borot and Jérémie Bouttier for
discussions about [12] and Christophe Garban and Jason Miller for discussions
about CLE and Liouville quantum gravity. We are also very grateful to Timo-
thy Budd for sharing his work in progress [16] with us and for useful comments
related to Theorem 4.3.

2. Convergence of the first generation

The goal of this section is to prove the convergence of the first generation of y(?,
as stated in the following proposition:
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Proposition 2.1. For any ¢: £{>°(IN*) — R bounded and continuous, we have
Elp(p™ xP(0):i 2 D] —— Blp (Za(i):i = D).

We will follow the scheme outlined in the introduction, which is summarized in the
Jollowing diagram.

gasket
decomposition

loop-decorated
quadrangulation

gasket = bipartite
Boltzmann map

size-biased \\ §2.3.1  size-biased
"""""""""" d 1K /> Sea 1.E )
equation (9) random walk /p—oo Lévy process

@0~ P
___________ -7 1§2.2.3
eSO (S
pointed bipartite 82.2. forest of mobiles forest of §2.3. random walk first
Boltzmann map (= bicolored trees) uncolored trees | f ykasiewicz| Passage bridge
(») »)

Xn)1<n<1p

(
SBDG S5

Figure 3. A solid arrow A — B indicates a transformation that encodes A by B. It is a
bijection when the arrow is two-headed. A dashed arrow A --> B indicates that the random
object B is obtained by size-biasing the law of A. Equation (9) is obtained by composing
all these transformations and size-biasing relations. Using it, we deduce Proposition 2.1
from the classical convergence of random walks to Lévy processes.

2.1. The gasket decomposition. We firstrecall the gasket decomposition of [13].
Given a loop-decorated quadrangulation (q,£) € Op, let/ > 0 be the number of
outer-most loops in £, i.e. loops which can be reached from the boundary of q
without crossing any other loop. The gasket decomposition consists in erasing all
the outer-most loops and all the edges crossed by these loops. This disconnects
the map into / + 1 connected components:

e The gasket is the connected component containing the external face of q. This
is arooted bipartite planar map (without loops) with a boundary of length 2 p.
An internal face of the gasket is either a quadrangular face inherited from g,
or one of the / holes obtained by removing the outer-most loops and their
interior component. Notice that a hole may have a non-simple boundary.
See Figure 4.

e The / remaining connected components are contained in the holes. More
precisely, inside a hole of degree 2p’, we find an element (¢, £") € O, .

To be rigorous, we need to specify a root edge for each internal quadrangulation
(q’,€’). This can be done in a deterministic way thanks to the lack of automor-
phisms of rooted planar maps. (For example, one can enumerate the edges of g
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Figure 4. Illustration of the gasket decomposition. Notice that after removing the outer-
most loops and their interiors, the holes in the gasket may be non-simple faces, similarly
to the external face. See also [13, Figure 4].

in the depth-first-search order from the root, and choose the first edge in ¢’ as its
root edge.) Similarly, the holes can also be numbered from 1 to / in a determin-
istic fashion. Therefore, given a bipartite map b of perimeter 2p, a loop deco-
rated quadrangulation (g, £) that admits b as gasket can be recovered by gluing
a loop-decorated quadrangulation in Or—wrapped in a “collar” of 2k quadran-
gles traversed by a loop—into each face of b degree 2k (or, if K = 2 we have the
additional possibility of gluing a plain quadrangle), see Figures 3 and 4 in [13].

Then it follows from (1) that the gasket of a loop-decorated quadrangulation of
distribution w,.¢ ) is distributed according to the so-called g-Boltzmann measure
(see [35]) on bipartite maps defined as

Wge (m) = 1_[ &gdeg(f)/2>
feFaces(m)\{fr}

where in our case the weight sequence g = (gx)«x>1 is related to the O(n) model

by the relations
gk = &8k + nh* Fr(n; g, h), (6)

see [13, Eq. (2.3)]. If the weight sequence g is such that for every p > 1, the total
wg-mass of bipartite maps with perimeter 2p is finite, then the above g-Boltz-
mann measure can be normalized to define a random g-Boltzmann map EB;” ) with
perimeter 2 p. This is clearly implied in our context by the admissibility of the pa-
rameters (n; g, h). In the next section, we recall classical codings of Boltzmann
maps (not necessarily related to the gasket of O(n)-decorated quadrangulations)
via random labeled forests.

2.2. Coding of bipartite Boltzmann maps with a boundary. The coding of
bipartite Boltzmann planar maps via the Bouttier—Di Francesco—Guitter (BDG)
bijection [14] and the study of the induced distribution on random planar trees
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has been studied in depth in [35] and more recently in [6]. We shall recall the
necessary background here referring to [6] for details. To present the coding in its
simplest form, we have to deal with pointed planar maps rather than maps.

2.2.1. BDG coding. A pointed map is a map given together with a distinguished
vertex p, chosen independently of the root of the map. Let (m, p) be a pointed
bipartite map with a boundary of degree 2p. A slight variation [6, Section 3.3] of
the classical BDG bijection in the context of pointed bipartite maps is defined as
follows.

(1) Draw a vertex in each face of m (including the external face). The new
vertices are considered black (e) and the old ones white (o). Label each white
vertex by its distance to the distinguished vertex p. Since the map is bipartite,
the labels of any two adjacent vertices differ exactly by one.

(2) For a face f of m and a white vertex adjacent to f, link the white vertex
to the black vertex inside f if the next white vertex in the clockwise order
around f has a smaller label.

(3) Remove the edges of m and the vertex p. It can be shown that the resulting
graph is a tree [14].

(4) Let vg be the black vertex corresponding to the external face of m. By
removing vy and its adjacent edges, we obtain a forest of cyclically ordered
trees, rooted at the neighbors of vy. Finally, we choose uniformly at random
one of the trees to be the first one, and subtract the labels in all trees by a
constant so that the label of the root vertex of this first tree becomes zero.

With a moment of thought on the Step 2 of the above construction, one observes
that:

i. Each internal face of degree 2k in m gives rise to a black vertex of degree k
in the forest, and the forest is composed of p trees.

ii. Given a black vertex of degree k, the possible labels on its (white) neighbors
are exactly those which, when read in the clockwise order around the black
vertex, can decrease at most by 1 at each step. If the label of one neighbor is
fixed, then there are exactly (2kk__11) possible labelings of the other neighbors
which satisfy the above constraint [35, Proof of Proposition 7].

A mobile is a rooted plane tree whose vertices at even (resp. odd) generations are
white (resp. black). We say that a forest of mobiles (t;,---,t,) is well labeled
if (a) the root vertex of t; has label 0, (b) the labels satisfy the constraint in the
observation (ii) above, and (c) the labels of the roots of t;, - - - , {,, satisfy the similar
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constraint. See [6, Section 6.1] for more details and a construction of the inverse
mapping.

+ forget labels

Figure 5. Illustration of the construction of a forest of p mobiles from a pointed bipartite
planar map with a boundary of perimeter 2p. The edges of the map are shown in red, and
the edges of the mobiles in black. The first mobile in the forest is not specified by the map
and is chosen uniformly at random among all the mobiles.

Let us now describe the effect of this coding on the Boltzmann measure. Given
a weight sequence g = (gx)x>1. the definition of the g-Boltzmann measure wg
naturally extends to pointed planar maps with the same formula. We suppose as
above that the wg-mass of bipartite maps with a given perimeter is finite. This
implies in particular that the wg-mass of all pointed bipartite maps with a given
perimeter is also finite. (This can be deduced from (3.2) in [13] and its pointed
analogue. See [18, Corollary 23].) In these equivalent cases the weight sequence
g is called admissible. (This should not be confounded with the admissibility of
a triple (n, g, h). The latter implies that the former when g is defined by (6), but
the inverse is not obvious [16].) Under this assumption we can define a random
bipartite map EBfgp )-* with a boundary of perimeter 2p by normalizing the above
Boltzmann measure.

If we let &}({BG be the unlabeled forest of mobiles obtained by applying the
construction 1.-4. to EBfgp )’°, then it follows from the observations (i) and (ii) that
S](BIBG is also Boltzmann distributed, with a weight 1 for white vertices and a weight
gk = (215__11) g for each black vertex of degree k. More precisely,

IP(S](Q,I;))G = f) X l_[gdeg(v)-
vee(f)

where o(f) is the set of black vertices of §, and the probability measure is normal-
ized over all forests of p finite mobiles. It has been shown in [35, Proposition 7]
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that S](BIBG is a two-type Galton—Watson forest whose law is given explicitly in
terms of g. For our purpose (which is proving Proposition 2.1), we could redo the
classical analysis of Galton—Watson trees in this context of multi-type Galton—
Watson trees but we use a much quicker road using a recent trick discovered by
Janson and Stefansson [29].

2.2.2. Janson and Stefansson’s trick. In [29, Section 3], Janson and Stefansson
discovered a mapping which transforms a mobile into a rooted plane tree by
keeping the same set of vertices, but changing the set of edges so that every white
vertex is mapped to a leaf, and every black vertex of degree k is mapped to an
internal vertex with k children. We refer to [19, Section 3.2] for details of this
transformation. The curious reader may have a look at the figure below and try to
guess how the bijection works.

Ry
W%
tU}

kﬁJ

Figure 6. Illustration of the Janson and Stefdnsson transformation.

The usefulness of this bijection is that the two-type Galton—Watson trees which
arise from the BDG bijection in the last section are transformed into a (one-type)
Galton—Watson tree. In our setting, let &’%’) be the image of 8’](3’3(} under this
bijection. The next proposition gathers and summarizes [35, Proposition 1] and

[29, Appendix] (see also [19, Proposition 3.6]) in our context:

Proposition 2.2. The weight sequence g = (gx)k>1 is admissible if and only if
the equation on x
pg(x) 1= ngxk =x—1
k>1
has a positive solution. For an admissible g, let Z g be the smallest such solution,
then S(p ) isa forest of p i.i.d. Galton—Watson trees with offspring distribution

1 - _
ms0) = —— and jus(k) =& Zg ' (k= 1). (7
g
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With this one can (at last) state the definition of non-generic criticality that
we imposed in this paper (this obviously matches the definition given in [13] and
in [33] for the associated g sequence, see also [18, Section 5.1.3]):

Definition 2.3. A weight sequence g is called critical and non-generic with
exponent @ € (1,2) if the sequence g is admissible for the pointed bipartite map
model and if the offspring distribution ujs is critical (i.e. it has mean one) and
satisfies

wis(k) ~ Ck™*7 ' ask — oo, for some C > 0.

By extension, a triplet (n; g, h) with n € (0,2) and g, > 0 is called critical and
non-generic if the associated g sequence defined by (6) is critical and non-generic.

Notice in particular that in the above definition uys(k) has a polynomial tail.
When the weight sequence g is derived from (n; g, #) as in (6) this means that the
exponential factors in (3), (6) and (7) must cancel out to leave only the polynomial
part in the asymptotic of ws(k), see [13, Section 3.3].

2.2.3. Back to the non-pointed gasket. In the last section, we have recalled the
coding of pointed Boltzmann maps via random trees. To come back to non-pointed
maps, we need to bias the law of the pointed map by the inverse of its number
of vertices. Notice that under the BDG bijection and Janson and Stefinsson’s
mapping, the vertices of EBfgp ) except the distinguished one, are mapped to the
white vertices of S](SIBG, then to the leaves of S}é’ ),

To summarize this chain of transformations into one equation, let Deg} (resp.

Degf; Degiut) denote the sequence of degrees of faces (resp. degrees of black
vertices; numbers of children) in a bipartite map (resp. forest of mobiles; forest
of trees), ranked in the decreasing order and completed by an infinite sequence of
zeros at the end. Recall also that B (resp. BE"*) is a g-Boltzmann map (resp.
pointed map) with a boundary of perimeter 2 p. Then for any positive measurable
function ¢: NN — R we have

1 1 ¢(1Degh(BY*))
Elp(30ee 8| = E[1/#Vvertex(BY")] [ #\Z/ertei(%g)") }
_ 1 E[fp(Degf @g;;c,»] ®
E[/(1+#0 GH) L1+#0 @80
_ I E[go(oegiut (S}é’)))}
E[1/(1 + #Leaf(F2)] L1+ #Leaf(3(5) 1

The above chain of equality is valid for any admissible sequence g.
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2.3. Scaling limit of the face degrees in the gasket. The discussion in the
previous section is valid for Boltzmann maps with a general (admissible) weight
sequence, and we now consider a weight sequence g that is derived from a
critical non-generic set of parameters (n; g, h) with exponent @ € (1,2) and
prove Proposition 2.1 (but the results are valid for any critical non-generic weight
sequence g as those considered in [33], [15], and [18, Section 5.1.3]).

2.3.1. Random walk coding. We now use the well-known random walk coding
of trees and forests to study the right-hand side of (8). Let S, = X; +---+ X, be
a random walk where (X,),>1 is an i.i.d. sequence with distribution

P(X1+1=k) = ps(k)
for k > 0. Define the first passage time of (S,),>0 to the level —p
T, =inf{n > 0[S, = —p},

and let L, = ZiTil 1x,=—1) be the number of negative steps of the walk up
to 7. Let XP) be the sequence (X, + 1)1<u<7, ranked in the decreasing order
and completed by infinitely many zeros. The classical coding of forests by their
Fukasiewicz paths shows that the sequence XP) has the same law as Degiut (S}é’))

and that jointly we have #Leaf(&}é’)) = L, in distribution. Therefore (8) can be

continued into

! E[w(oegfm (&}5)))]
E[1/(1 + #Leaf(32))] L1 + #Leaf(32)
B 1 B |: gD(x(p)) j|

B[/ 4Lyl L1+L, ]

By definition, the first generation of x(”) is the sequence of half-degrees of
the holes in the gasket, sorted in the decreasing order (multiple holes of the same
degree result in repeated terms in the sequence) and completed with infinitely
many zeros at the end. Recall that the faces of the gasket are either holes or regular
faces of degree 4. Therefore, if g is the weight sequence given by (6), then the first
generation of x(?) differs from %Deg}(%fgp )) at most by 2 in the £°°(IN*) norm.
From the last display and the fact that L, > p it follows that, for any bounded
continuous function ¢: £*°(IN*) — R, we have

1 E[w(p—l ,x(l?))
[1/Lp] Lp

as p — oo. With all the reductions we have been through we are now in position
to prove Proposition 2.1.

oo (0eef2)] -
)

Elp(p~ P (i):i = 1)] = = ] +o(l).  (10)



552 L. Chen, N. Curien, and P. Maillard

Proof of Proposition 2.1. Recall from (7) that the step distribution of the walk S
is supposed by Definition 2.3 to be centered and in the domain of attraction of the
totally asymmetric stable law of parameter «. Recall also the notation from the
Introduction and in particular that ¢ is a standard «-stable Lévy process with no
negative jumps. We can suppose that { has been normalized so that by a classical
invariance principle we have

(%S[tna]) L) (é‘t)t>0

>0 n—00
for the Skorokhod topology. With standard arguments, one can show that the

above convergence in distribution holds jointly with (using the notation of the
Introduction)

d
T, 25 ¢ and —:x(l’) S (AL (11)
pP—>00
where the second convergence takes place in the (Z°°(]N*) topology. We now give

a lemma controlling L, via 7, in a precise manner:

Lemma 2.4. There is ¢ > 0 depending only on the weight sequence g, such that
foralle > 0and p > 1,

P(T, <ep®) <P(Lp <ep®) < exp(—cs_ﬁ), (12)
L —a 1 .«
P(‘Tp _MJS(O)‘ >p /4) < 7' p* 7 exp(—c /D), (13)
D

and

T,
P(—p > K) <c lexp(—cKp). forall K >

I, (14)

2
15(0)°
We finish the proof of Proposition 2.1 given Lemma 2.4. Equation (13)
implies that L,/ T, converges to js(0) in probability, thus in distribution jointly
with (11). Hence we have

s 0) - =g (pm12@) O J((ag)Y)

P p—>0

On the other hand, (12) implies that the sequence ( p"‘L;l) p>1 is uniformly inte-
grable. Therefore we can take expectations in the last convergence in distribution
and it follows that

EIL,'o(p7' X)) wis(0) - E(p*L, o(p~'XP))) E[r~'o((A8)Y)]
E[L,"] - s (0) - E[p* L] pooo B[]
= Elp(Za(i):i = 1)].
With (9) this finishes the proof of the proposition. |




The perimeter cascade 553

Proof of Lemma 2.4. The first inequality in (12) follows from L, < T,. For the
second inequality, consider for A > 0 the non-negative martingale

n
M, = exp ( —AS, =¥ () Z ]l{Xi=—1})
i=1

where W(1) is defined by the equation E [exp(—AX; — W(A)1ix,——13)] = 1, or
explicitly by

Ele™*%1] — 1
Y(A) =—1 - ——).
() = ~tog ( elP(XI::—l))
By Fatou’s lemma, E[M7,] = Elexp(Ap — W(1)L,)] < 1. Notice that since
Ele=*X1] > ¢*EX1] = 1 we always have W(1) > 0 as soon as A > 0. We can

thus apply the Chernoff bound and get
P(Lp < ep®) < Elexp(ep®W(A) — W(A)Lp)] < exp(ep®¥(A) —Ap).  (15)

From our standing assumptions, we know that X; has the power law tail behavior
P(X; = x) ~ Cx™® (x — o0) and so by standard Abelian theorems its Laplace
transform witnesses the following asymptotic:

E[e™*X1] =1+ C'A% + o(1%).

It follows that (1) ~ C”A% as A — 0. On the other hand, it is easy to see that
W(A) ~ A when A — oo. Therefore there exists a constant ¢’ such that (1) <
¢’A%* for all A > 0. Then (12) follows from (15) by taking A = c”(sﬁ p)~! with
¢” > 0 sufficiently small.

For (13), observe that for all 8 > 0 and 6 € (0, «),

P(‘& _MJS(O)‘ > P_ﬁa)

TP
o0 1 n
- ZP(‘_ D lixi=1y — MJS(O)‘ > p P and T, = ”)
n=1 n i=1
o0 1 n
= P(Ty < p) + 2 P(|- Y b=y — s 0)] = p77)
n=p® L
(%) a—6 > ~ 2
< exp(—cpoT) + ) | 2exp(~énp~ P
n=p9

< exp(—cpg_:?) + 2671 p?Pe exp(—ép?2P),.



554 L. Chen, N. Curien, and P. Maillard

where for (x) we used (12) with ¢ = p?~2 and the standard Chernoff bound
for i.i.d. Bernoulli random variables. The constant ¢ depends only on po. We
obtain (13) by taking 8 = 1/4 and optimizing over 6.

For (14), we start by observing that L, > p, therefore 7, > pK on the
event {Tp /L, > K } Then using the same arguments as for (13), we get for all

K =2/p5s(0),

]P(Z—’;zK):nXI;K ( Z]l{x=_1}>1< and 7, = n)
o

> exp(—é(uis(0) — K~ Hn)

n=pK

_exp (—3¢u11s(0)Kp)
T 1 —exp(—3¢uss(0))

IA

3. A formula for left-continuous random walks

In this section, we prove Theorem 1.3 and an analogue of it for spectrally positive
Lévy processes.

3.1. Proof of Theorem 1.3. Throughout the section, we denote by
Sn=X1+--+Xn

a left-continuous random walk on Z (that is, (X;);>; are i.i.d. with X; > —1)
and by T, the hitting time of —p € Z by S = (S,)n>0. In particular we have
St, = —p. The proof of Theorem 1.3 will make a heavy use of Kemperman’s
formula:

P(T, = n) = S]P(S,, = —p) foralln>1land p> 1.

See e.g. [40, Section 6.1] (where there the notation S, stands for our S, — n).
More precisely it follows from [40, Lemma 6.1] that if » > 1 and p > 1, then for
any positive measurable function F(xy,..., x,) which is invariant under cyclic
permutation of its arguments, we have the extended Kemperman’s formula:

P
E[F(X1. . Xn) g, =m] = ~E[F (X1 Xa)Lis, =],
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Proof of Theorem 1.3. Letn > 2. We have

Ap = E[Xn: f(Xi)]l{T,,=n}]
i=1

(by extended Kemperman’s formula)

n
P
= ;E[ > f(Xi)]l{sn=—p}]
i=1
(by cyclic symmetry)

= pE[f(X1)1s,=-p)]
(by Markov property)
= pE[f(XD)P(Sp—1 = —p — X1 | X1)]

(by Kemperman’s formula)
D
= E[f(Xl)p 1(n—l)IP(TerX1 =n-—1 |X1)].

Since p > 2, we have T, > 2 and T4, > 1 almost surely, for every x € {—1,0,
1,...}. Hence,

T, )
Bl L] =35,

Esz
[rx

E| f

An

S

P+X —”—1|X1)]

S ]
where in the penultimate line we used the fact that 7, < oo almost surely to deduce

that the sum inside the expectation is equal to 1. This completes the proof of the
theorem. u

The theorem has the following generalization, whose proof is an easy extension
of the above proof and left to the reader.

Proposition 3.1. Suppose that the random walk (Sy)n>0 does not drift to +oo.
Form > 1, let f: 7™ — Ry and g:\J;2, Z/ — Ry be symmetric measurable
functions. Then for any p > 1 we have

L7, >m)
E[ L 2: Xi oo X g (X)) igtie v ]
(Tp 1) (Tp — m)(il f( i tm)g(( ])]¢{l1 ,,,,, lm},]STp)

LT, >m)

E[g((X]); _ .
p+Xi+--+ Xy [g(( ./)JSTq)”q pHXi1+-+Xm

ZE[f(Xl,--- Xom)
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where A’}; is the set of all ordered m-tuples of distinct elements (m-arrangements)
from {1,--- Ty} and (X})n>1 is an independent copy of the sequence (X)n>1.

3.2. Passing to the limit: an analogous formula for Lévy processes. Let now
(n¢)¢>0 be a Lévy process with no negative jumps started from 79 = 0. Denote by
7 (dx) its Lévy measure (supported on R ) and by 7 the hitting time of —1. Denote
by An; := n; —n;— the size of the jump at time ¢. The sum or product over all jump
times ¢ up to the time t will simply be denoted by ), _. or [[,_,, respectively.
The following two results are analogues of Theorem 1.3 and Pro_position 3.1 for
the Lévy process (1;)¢>o0.

Proposition 3.2. Suppose that © < oo almost surely. Let f:R} — R be non-
negative, measurable and such that f(0) = 0. Then we have

B[L Y @] = [ o—n@n.

t<t

Proposition 3.3. Suppose that t < oo almost surely. Form > 1, let f: R} — R4
be symmetric measurable and g: R+ — R4 be measurable functions. Then,

E[Tim > Sy A, [Tean0]

t<TtE{t1 50 5tm}

:/.../f(xl,...,xm)l+x1 +1"'+Xm
B [Te@m]| _, . . «(@x)-«(do).

t<ty

where the sum Y is over all ordered m-tuples (t1, ..., tm) of distinct elements
from the set of jump times up to v, and ty is the hitting time of the level —y.

Remark 3.4. Notice that, somehow surprisingly, the drift and the Brownian
component of the Lévy process do not appear explicitly in the result (as long as
the Lévy process does not drift to co). However, they do affect the distribution of
7 and of the jumps until time z.

We only prove Proposition 3.2, the proof of Proposition 3.3 is a straightforward
generalization.
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Proof of Proposition 3.2. We could of course adapt the proof of Theorem 1.3 to
the current setting (in the spirit of [5]) however, we find it shorter to simply argue
by approximation. Let S(") X; ™4t X ™ be a sequence of left-continuous
random walks and (an)nzo a sequence of positive integers, such that

nt

1o (@)
( IS( )J)t>0 —> (77t)t>0 (16)

in distribution in the Skorokhod topology. (The existence of such random walks
can be deduced from classical approximation results for Lévy processes, see e.g.
[30, Theorem 14.14].) In particular this means that n]P(Xl(") > xap) = w((x,00))
for all x which is not an atom of 7. Note also that it is always possible to perform
such an approximation in such a way that the walk S does not drift towards oo.
For any continuous function f on R} with compact support, we then have (the
equality () is justified just below)

L3 om0 i o2 3% )

T lim nE[f(a ')

n‘i‘)(li|

=/f(x)1+x7r(dx).

The statement then follows by a monotone class argument. In order to justify ()
one can first invoke the Skorokhod embedding theorem and assume that (16) holds
almost surely. It then follows from standard arguments that

Tan
25 f@ XMy — =3 f(an)
n j—1 t<t

in distribution as n — oo. It thus remains to prove uniform integrability in order to
allow convergence of the expectations. Without loss of generality, we can assume
that f is supported in [1, c0) and bounded by 1, that is, /' < 1{,>;}. Define

NP =#1<i <k: X" > ay),

then we can write
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Since P(X 1(") > ay) is of order 1/n, we can choose A large enough so that
]P(Xl(") > a,) < 1 — exp(=A/n) for all n. Then the process (N,S"))kzl is
stochastically bounded by (Yx/,)k>1, where Y is a standard Poisson process of
intensity A. Easy estimates show that E[(sup,., 7~'Y;)?] < oo, which gives a
uniform bound to the second term on the right-hand side of the last display. For
the first term, we apply Cauchy—Schwarz inequality to get that

n 2 n o\4 1/2
B (7M7) Sz =] = (BV-E[ () Ti=n])

an

Using estimates similar to those of Lemma 2.4 we deduce that the expectation

E[ (7% )*147,, <n] is bounded uniformly in 7. Gathering the estimates we deduce

that E[ (72~ ST fay 1Xi(")))z] is bounded uniformly in n. This gives the
desired uniform integrability. O

4. Properties of the limiting multiplicative cascade

In this section, we examine in detail the multiplicative cascade Z, defined in the
introduction. The most important quantity of a multiplicative cascade, which de-
termines much of its asymptotic behavior, is the Biggins transform. We calculate
this transform in Section 4.1, relying on the formula for Lévy processes proved in
the previous section (Proposition 3.2). This allows to define additive martingales
which we make explicit. We also calculate the Legendre—Fenchel transform of
the (log-)Biggins transform, which describes the asymptotic growth of the multi-
plicative cascade. In Section 4.2, we show that the Malthusian martingale of the
multiplicative cascade is uniformly integrable and calculate the law of its limit.
We conjecture this law to be the asymptotic law of the renormalized volume of
the O(n)-decorated quadrangulations considered in this paper. Finally, in Sec-
tion 4.3, we study L?-convergence of the additive martingales.

The results in Sections 4.2 and 4.3 are not used in the proof of the main
convergence theorem but we believe them to be of intrinsic interest and of possible
later use.

4.1. The Biggins transform and additive martingales. In this section we prove
the formula for the Biggins transform of the measure v, (see Figure 7 for a plot
for different values of «):

_ B[Sz = =)
¢a(9)—E[;(2a(z)) ]_sin(n(G—a)) for € (a+1).  (17)
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0.0 L L L ,
1.0 15 20 25 3.0

Figure 7. The various functions ¢ () for « = 1.1, 1.2,..., 1.9, and the line y = 1
(dashed).

Proof of (17). We use Proposition 3.2 when n = { is a spectrally positive a-stable
Lévy process for a € (1,2). In this case recall that we have E[e~*¢] = exp(C A%)
and the Lévy measure of ¢ is equal to

C dx
F() vaF 10"

7(dx) =

Applying the above-mentioned proposition we deduce that

el L] = [ Prpmon = 15 [ e
0

1<t
Crn
= I'(—a)sin(m (0 — a))
~+00 otherwise.

if0 e (,a+1),

For the last equality, see e.g. [24, 6.2(3)]. Moreover, it is classical (see e.g. [3,
Chapter VII, Theorem 1]) that for A > 0 we have E[e=*7] = e~*/©)""* and so

E[l/7] = [/ "“dk] /—W@”"‘dkzcr(ua). (18)
0
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Combining the last two displays with Euler’s reflection formula we indeed com-
pute the Biggins transform of the measure v, as promised

(3 —
E[7 X< (A)°] _ % if 0 € (o, + 1),

1
E[?] 400 otherwise.

We see that the above result does not depend on the normalizing constant C
appearing in the definition of {. As we already remarked in the introduction, this
can more directly be seen using a scaling argument to show that the law of v, is
independent of C. O

Additive martingales. Consider the following family of processes, indexed by
0 e (a,a+1),

Wa(@,0) = ¢a(0) ™" Y (Za(u))’. (19)

u:lul=n

It is well known and easy to show that each of these processes is a non-negative
martingale with respect to the o-field F, = o(Z4(u), |[u] < n). Since for each
n € N, W, (a, ) is an additive functional of (Z (1)) 4=, they are also called (the)
additive martingales of the multiplicative cascade Z,. Of special importance is
the so-called Malthusian martingale corresponding to the Malthusian parameter
0, which is the smaller solution of the equation ¢, (6) = 1. One easily checks
that for @ € (1,2)\{3/2}, there are exactly two solutions to this equation, namely
2 and 2« — 1, and so the Malthusian parameter equals

2 if « > 2 (dilute case),

0y = min(2,2a — 1) = { (20)

20 — 1 ifa < 3 (dense case).

In particular we deduce that for 6 € [min(2, 2« — 1), max(2, 2« — 1)], which is
a non-empty interval as soon as o # %, the multiplicative cascade Z,, satisfies

E[ Y (Za@) ]| = Y 4a(6)) < oo,

uel k=0

in particular (Z,) belongs to £ () almost surely.
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In Section 4.2, we prove that the Malthusian martingale (Wy (e, 0y))n>0 is
uniformly integrable and identify the law of the limit. We also explain why
this limit law should give the scaling limit of the volume of the O(n)-decorated
quadrangulation with a boundary. In Section 4.3, we provide moment bounds
on Wj(«, 0), which allow to prove convergence in L? of W, («, 0) for suitable p
and 6.

Remark 4.1. In the critical case« = %—which we do not consider in this paper—
the equation ¢35 (6/) = 1 has only one solution 6 = 2. Itis well known that in this
case, the martingale W}, (o, 2) converges to 0 almost surely, but one can still get a
non-trivial limit either by considering the so-called derivative martingale [32] or
by renormalizing the martingale W, («,2) appropriately [1], the two approaches

leading to the same result.

For completeness, we note that the Legendre—Fenchel transform of log ¢ can
also be explicitly evaluated (we leave the calculation to the reader). This allows
to determine the asymptotic growth of the multiplicative cascade, see Biggins [8]
for further details.

Proposition 4.2. Let arccot be the branch of the arccotangent taking values in
(0, m). For x € R,

(log ¢a)™ (x) := Suﬂg{@x — log ¢a(6)}
2

— X B NS X\ L loesi _
=ax + - arccot( ”> 5 log (1 + 7r2> log sin(7 (2 — @)).
2D

This function is strictly increasing and its (unique) root is negative if @ # % and

Oifa = %

4.2. The volume of the map: the law of the Malthusian martingale limit.
Recall the definition of the modified Bessel function of the third kind K, (also
called Macdonald function) see e.g. [23, Section 7.2.2]:

K,(z) = 2s1n(7r )(I—v(Z) 1,(2))

_ r(V)T(1 —V) (/2> (z/2)>"*”
B Zn'[F(n—v—I—l) I'(n—l—v—i—l)]'

(22)

Recall that @ € (1, 2)\{5} throughout the paper. Define for every 6 > 0,

2 _
Vao(¥) = ———x @ P0K, 1 p(2x10),

(o —3)
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Then ¥4 (0) = 1 for all & and 6, by (22). Note that ¥ ¢(x) = V¢ (x?"/?) for
every 6,60 > 0. Also recall the formula [23, 7.12.23]

o0

1 )t/me_xz/ey‘l/yy‘*“*‘/z’dy. (23)

Fla-3

Ve6(X) = Va2 (x?%) =
0

In particular, v, is the Laplace transform of the inverse-Gamma distribution

with parameters o — % and 1. The following theorem identifies the law of the

Malthusian martingale limit in terms of the function v, ¢:

Theorem 4.3 (law of the Malthusian martingale limit). The Malthusian martig-
nale (Wy(a, 0y))n>o0 is uniformly integrable for all « € (1,2) \ {%} Its limit
Weo(a, 8y) has the following Laplace transform: In the dilute case (o > %),

Ble™ 2] =y (o= 3 ).

that is, Woo (e, 2) follows the inverse-Gamma distribution with parameters o — %

and o — % In the dense case (a < %),

T(a+ 1/2)x)

Ele ™ Wee@20=D] = o 561 ( r3/2-a)

Remark 4.4. Let V(p) be the volume (i.e. number of vertices) of the loop-
decorated quadrangulation distributed according to ]P,(f;’;’ - We expect Weo (e, 6)
to be the scaling limit of V(p), more precisely,

PV () = A Woolet. 0a) (24)

for some constant A > 0. To see why, let us consider V, (p), the expectation
of V(p) conditionally on the part of the loop-decorated quadrangulation outside
the loops of generation n. In particular Vo(p) =: V(p) is the (unconditional)
expectation of V(p). Clearly, (Vy,(p))no is a uniformly integrable martingale
that converges to V(p).

Actually, V,(p) is the discrete counterpart of the Malthusian martingale
W, (a, 6y). According to a result of Timothy Budd (Theorem A), V(p) ~ Ap%«
as p — oo. Combining this with estimates on the volume of the gasket, it can
be shown that the volume outside the loops of generation » is negligible, hence
Va(P) & Y juj=n VxP) ~ A - Z|u|=n()(1(4p))0"‘. In addition, the scaling limit
of the perimeter cascade (Theorem 1.1) gives )(,(f’ ) ~ pZqy(u). It follows that
Va(p) ~ pPA -3 1p Zaw)? = pP A - W, (a.6,). Then, taking the limit
n — oo on both sides suggests (24).
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The above heuristics can be turned into a rigorous proof if we assume that the
family (p~%V(p)) p>o is uniformly integrable.

Remark 4.5. The inverse-Gamma distribution is known to appear as the limiting
law of the volume of planar maps decorated by statistical physics models in
the dilute case. Even in the dense case, the Laplace transform v, 24—1 has
implicitly appeared in the physics literature in the same context as this paper [31,
equation (2.5)] (we are grateful to Timothy Budd for showing this to us, this helped
us find the right law!). Note that Theorem 4.3 shows in particular thatif o € (1, 3),
the function v, 241 is the Laplace transform of a probability distribution, which
is not obvious a priori and for which we do not have a direct proof. In particular,
we do not have an explicit expression of its density. However, this probability
distribution is related to the Laplace transform of the inverse-Gamma distribution
of parameter o — % by the subordination relation

Wa,2(x) = w(x,2(x—1 (x(x—l/2)‘

Remark 4.6. In order to show uniform integrability of additive martingales, one
usually uses a famous result of Biggins, later improved by Lyons [34], which states
that the martingale W, («, 6) is uniformly integrable if

O(log o) (0) < logga(8) and E[Wi(a,0)log, (Wi(a. 0))] < oo,

where log(x) is the natural logarithm and log , (x) := max(0, log(x)). Otherwise,
W, («, 8) converges almost surely to 0. Our proof of uniform integrability bypasses
this result.

The main part of the proof of Theorem 4.3 is the following Lemma 4.7,
which identifies the function ¥, ¢ as the solution to a certain functional equation.
Together with a general result on multiplicative cascades (Proposition 4.8 below),
this will readily imply the theorem.

Lemma 4.7. For every a € (1,2), 6 > 0, the function V¢ satisfies the equation
o

Voo = B[ [[Vas6Za)®)] x>0 yO=1. @3
i=1

Proof. It is enough to prove the formula for 6 = 1, by the relation ¥y o(x) =
Va1 (x'/9), x > 0. We therefore assume 6 = 1 from now on and write ¥ := Va1

We start by expressing the right-hand side of (25) in terms of the jumps of an
a-stable Lévy process. Let ({;);>0 be an «-stable Lévy process with no negative
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jumps started at 0, more precisely we assume that its cumulant is given by

o0
1
log Ble 1] = [ (€™ — 14 Ax)— dx. (26)
X
0
Let 7 denote the hitting time of —1 of ¢. Then (25) reads,
1 17\1
Y () = caE[;Ew(mc,)], = (E[Z]) . @7)

where the product is over all jump times ¢ less than . By (18) and Euler’s
reflection formula,
_ sin(ra)  sin(r(ae — 1))

o =

(28)

T T

In order to prove (27), we transform it successively into a series of equivalent
equations (using certain properties and representations of ). First derive with
respect to x, which gives by the product formula,

V') = ol - Y (a00w eat) [T (xag)

<t s<t,S5F#t

where the differentiation inside the expectation is justified by the monotonicity
of ¥, see (23). Since ¥ (0) = 1 by the same identity, the above equation is therefore
equivalent to (27). By Proposition 3.3, we can further express it as follows:
n 1+
v =a [ oo [Tvese] T @)
y 1 + y <t

0

In order to calculate the expectation on the right-hand side of (29), we use the
fact that the functional (]_[KT 1//(AA§,)) induces a change of measure of the Lévy
process ¢, which turns it into a non-conservative Lévy process, i.e. a Lévy process
with killing. More precisely, define the subprobability measure Py, . by

EylHi) = B[ H [Ty (xag))

for every o (({s)o<s<¢)-measurable bounded random variable H,. It is a standard
fact that under Py », the process ¢ is again a Lévy process with cumulant «y x
given by

T 1
@) = [ ) =1+ Ay . (30)
0
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It follows from the definition of xy , that it is a continuous strictly increasing
function on [0, co). We may thus define its inverse k., . on [ky,x(0), o0). Note that
Ky,x(0) < 0, soin particular, k., (0) is well defined. The following is well known:

Bl [Ty a0 ] = Byli] = 70, (31)

By (31), we can express (29) equivalently as
[d 1
_ —1
¥ (x) = ca / y_zw/(xy)me (+y)ky,  (0) (32)
0

Until now, we have only used the monotonicity of ¢ and the fact that y(0) = 1.
We now show that (29) is an identity for our particular choice of . For this
function, it turns out that «, ! (0) = 2x, or, equivalently, ky,x(2x) = 0, as can
be easily checked by elementary computations, using the formula (23) (or by a
computer algebra software). Equation (32) then becomes

o0
dy |
V) = [ Syen e,
0

Changing variables y + y/x in the integral, this equation becomes

OO

P'(x) = cqe” P x” w()xﬂ 2, (33)
0

Recall that ¥ (x) = Cox* V/2K,_/2(2x) for some Cy > 0. Then ¥/(x) =
—2Cx*" V2K, _3/5(2x) [23, 7.11(21)]. Using this identity, (33) is equivalent to

o0
22 Kamsp Q) _ / L2y Ka3/2(2) dy
Jx ) X +y vy

or, equivalently,

ex/zK(x_3/2(X/2) —c / 1 e_y ey/zKa—3/2(J’/2) d (34)

NS “J x4y Sy

0
Recall ¢, = sin(m(a — 1))/ = sin (7 ((« — 3) + 3))/7. Equation (34) is then
a special case of a known identity for Whittaker functions, see e.g. [20, p335] or
[39, 13.16.6]. This finishes the proof of the lemma. O
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The following proposition is a general result on multiplicative cascades, for
which we provide a proof for completeness. Although results of this flavor are
omnipresent in the literature and its proof idea, using multiplicative martingales,
is by now standard, we could not find a suitable reference in the literature working
under our minimal assumptions.

Proposition 4.8. Let (Z,), be a multiplicative cascade with Zg = 1. Suppose
that IEJ[ > Zi] = 1. Furthermore, suppose there exists a measurable function
¢: R4 — [0, 1] satisfying $(0) = 1, 1 —¢p(x) ~x as x — 0, and

o
¢(x) = E[ 1_[ ¢(xZ,~)] forall x > 0.
i=1
Then the martingale W,, = Z|u|=n Z,, is uniformly integrable and its limiting
random variable has Laplace transform ¢.

Proof. We first note that (W,,),>0 is a non-negative martingale and thus converges
a.s. to a limit W It is easy to show that this implies that max,—, Z, — 0 a.s.,
asn — oo.

Now introduce for every x > 0 the process M, (x) = ]_[|u|=n ¢(xZy),n >0.1It
is well known and easy to show that for every x > 0, (M, (x)),>0 is a martingale,
called a multiplicative martingale associated to the multiplicative cascade (Z,,),.
It takes values in [0, 1] and therefore converges a.s. and in L' to a limit My (x).
Furthermore, since 1 — ¢ (x) ~ x as x — 0 by assumption and maxj, =, Z, — 0
a.s.,as n — oo,

log Moo(x) = lim_ > log¢(xZy) = lim_ D (—xZy) = —xWeo.

[u|=n [u|=n

This shows that for every x > 0,
$(x) = Mo(x) = E[Moo(x)] = Ele™"],

Hence, ¢ is the Laplace transform of W. Moreover, since 1 — ¢(x) ~ x as
x — 0, the random variable W5, has unit expectation. Scheffé’s lemma then
gives that W, converges in L' to W, hence the martingale (Wa)n>o is uniformly
integrable. O

Proof of Theorem 4.3. By Lemma 4.7 and Proposition 4.8, it suffices to show
that 1 — Ye2(x) ~ x/(¢ —3)asx — Oifa > 3, and 1 — Yg2a-1(x) ~
('3 —a)/T(« + %))x asx —> 0if « < 2. But this is an easy consequence
of (22), noting that the second-order term as z — 0 is the n = 1 term of the first
sum if @ > % (v > 1), whereas it is the n = 0 term of the second sum if ¢ <

v <1).

O ot
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4.3. LP-convergence of the additive martingales. The additive martingales
introduced in Section 4.1 are important observables of the multiplicative cascade
Zy. Although it is not used in the proof of the main result of this article, it is
vital to know that they do not display pathological behavior. This is ensured by
the following proposition, which we include for completeness:

Proposition 4.9. Let p > 1 and 0 € (a,a + 1) be such that log ¢po(p0) <
plog ¢o(6). Then the martingale (W, (o, 0))n>0 converges in L?.

The proposition will follow from classical results once the following lemma is
established:

Lemma 4.10. Let 0 € (a,a + 1). Then,
E[(Wi(a, 0))P] <oco forevery p < (a+1)/6.

Proof of Proposition 4.9. Let p and 6 as in the statement of the proposition.
A classical result by Biggins [9, Theorem 1] then gives the required convergence,
provided IE [(W; («, 0))P] < oo. But by the hypothesis on p and 6, we necessarily
have p6 < a + 1, since ¢y (1) = +oo for A > o + 1. Lemma 4.10 then implies
the result. |

Proof of Lemma 4.10. Throughout the proof, we denote by C and C, arbitrary
positive, finite constants, whose values may change from line to line. They may
depend on « and the constant C, may furthermore depend on ¢ > 0 introduced
later. Recall the definition of the multiplicative cascade in terms of a spectrally
positive «-stable Lévy process . It is well known that ¢, the hitting time of
—1 by ¢, is a positive é—stable random variable. We collect some well-known
estimates on its density, see e.g. [43, Chapter 2.5]:

P(r edt) ~Ct™ /%1 1 5 0 (35)
P(r € dt) = exp(—(1 + o(1)): "V, ¢t - 0. (36)

We now bound the tail of Wi («, 8). Let x — ¢, Ry — R4 be an arbitrary
function for the moment, whose value we will choose later on. Then, for all x > 0,

1
POV1(@.6) > ) = CE[ 15 (agyyos]

1 1
- CE[;lzsfr(Azs)">x,r>tx] + CE[;IZ‘YSt(AQ)"»c,rstX]-
(37
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By (35), we bound the first summand on the right-hand side of (37) for large x by

1 1 _
B[ 15 agyionon | S B[ les | = C™ WD 38

As for the second summand, we use Holder’s inequality to get for every ¢ > 0,

B[ 15wt ren ] < B[] P(L 06 > v rsn) T 69)
S<7T

By (36),

]E[Tll/s]s < Cs. (40)

We continue with bounding the probability on the right-hand side in (39). Since
¢ is a-stable, there is a constant p € (0, 1), such that P({; < 0) = p for all s > 0.
Applying this with the Markov property at time t, we get

p]P(Z(Ags)G >x 1< zx)

S<t

=P( D (AL’ > x T =t G, = 1)

S<Ix

=P( Y (AL)" > x, max(ALy) < 8x) + P(max(AL,)® > 8x, &, < 1),

S<tx

where § is some small positive constant. Classical large-deviation estimates for
sums of iid heavy-tailed random variables [38] yield that the first term on the
right-hand side is for large x smaller than any fixed polynomial in x as long as
1, < x*/9=¢ and § is sufficiently small. As for the second term on the right-hand
side, denote by ¢a process defined as £, except that all the jumps greater than
(6x)'/? are suppressed. Then, by independence of the large and small jumps,

P(max(ALy)? > 8x. &, < =1) < P(=&y, = (60)'%).

One easily checks that as x — oo, |E[¢;, ]| ~ 1xC(8x)~@ D/ = o(5x)!/%) as long

as t, = o(x%/?). Hence, the event in the above probability is a large deviation

event. By the finiteness of the moment generating function of —¢ for positive

values of the argument, the Chernoff bound easily implies that the probability

]P(—E,x > (6x)/%) decays streched exponentially in x, as long as ¢, < x*/¢—=
Summarizing the previous arguments, the probability

IP(Z(A;S)G > 1< zx)

S<T
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decreases superpolynomially in x as long as 7, < x%/?~¢. Together with (37)-(40),
we have for every ¢ > 0, for large x,

P(Wi(a,0) > x) < Ce(ty)~ W/t

as long as #, < x*/%~¢_ Choosing ¢, to be equal to this bound, this gives for every
e > 0, for large x, P(Wi(x,0) > x) < Cox~1+/0+2 This readily implies the
statement of the lemma. O

5. Convergence towards the continuous multiplicative cascade

In this section we prove our main convergence result, Theorem 1.1. We do it step
by step in order to emphasize the different requirements for the different types of
convergence.

5.1. Finite dimensional convergence

Proposition 5.1 (finite dimensional convergence). With the notation of Theo-
rem 1.1 we have the following convergence in distribution in the sense of finite-
dimensional marginals

(P~ P u):u e ) p(_)%) (Zo(u):u € U).
Proof. This is a more or less straightforward corollary of the convergence of
the first generation (Proposition 2.1) together with the Markov property in the
gasket decomposition. Recall the notation of the introduction and in particular
1P (@) = p, recall also that (Si("):i > 1),eu are independent random vectors
distributed according to v, and indexed by U. Fix ko > 1. It follows from
Proposition 2.1 that we have

) (;
X (l)) @
(X(p)(g) lfifk() p—>00 (El )1515]{0.

Now, it follows from the gasket decomposition that conditionally on the perime-
ters (P (i):1 < i < ko) of the first generation of the loops, the loop-decorated
quadrangulations filling in the first k¢ holes (ranked in decreasing order of their

(P (i
perimeters) in the gasket are independent and distributed according to ]P{npg(;l;
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Since we have y(? (kg) — oo in probability (indeed % ¥ P (ko) — Zg(ko) in
distribution and Z,(k¢) > 0 almost surely) we can then apply Proposition 2.1
once more to these second generation quadrangulations to deduce that

P (i
X (lJ)) @) My
(C0 eyt 7o G =iz

and these convergences in law hold jointly for alli € @ U {1,2, ..., ko}. Iterating
the above argument we get that for any finite subtree t C U containing the root and
for any vertex u,ui € t we have the joint convergences x (ui)/ @ (u) — £™
in distribution. This implies the finite dimensional convergence. |

5.2. £°° convergence generation by generation. In this section we strengthen
Proposition 5.1 into a convergence in £°° for any finite number of generations.
Indeed, the convergence of Proposition 5.1 does not prevent y») from having
1P (1) < p at some vertex u — oo (i.e. u leaves any fixed finite subset of U) as
p — oo. The following statement shows that this is impossible if the height of u
stays bounded. For any £ > 1 let Uy be subtree of the first k generations in U.

Proposition 5.2. Foranyk > 1 we have the following convergence in distribution
in L9 (Uy) forall 0 > «

_ )
(P~ P (u):u € Uy) pavne (Zo(u):u € Uy).

As it will turn out, the last proposition is a consequence of the finite-dimen-
sional convergence (Proposition 5.1) together with a convergence in mean of the
sum of powers in the cascade. More precisely we will use:

Lemma 5.3. Forany 0 € (o, + 1) and for any k > 1,

B[ Y0 1P| = B[ Y (Zaw)’] = ga0)*.

uel:|u|=k uel:|lu|=k

Proof. We prove the convergence by induction on k& > 1. Using the notation of
Section 2.3.1 and in particular (9) as well as (10) we have

B[ X0 0w = e[ 2 () ]+ 00,

lul=k E[LLp] Lp 1<i<Tp
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The inequality comes from the fact that some faces (of degree four) of the gasket
are not holes surrounded by a loop and the O(p~!) from the approximation
L, ~ L, + 1. (Recall that p < L, < T,.) By Fatou’s lemma the right-hand side
in Lemma 5.3 is less than the liminf of the left-hand side. Therefore it suffices to
prove that the right-hand side in the last display converges towards ¢4 (6). This
will be shown using Theorem 1.3 and the approximation

Tp

0 () - S (Y

i=1

Indeed since 7, > p, by Theorem 1.3 we can write

E[U) = B| : Z(Xi:l)e]-(1+0(p“))
1

:E[(Xl + 1)6’pr1]'(1 + o).

Recall that p*P(X; > xp) — n([x, 00)) where 7(dx) = Cx™* 1/ T (—a) L x>0}
is the Lévy measure of the a-stable Lévy process {. As in the proof of Proposi-
tion 3.2, we can use dominated convergence to get that

0

B —— [ Fnan = B[ 2 Y 6]

We have already seen in the proof of Theorem 2.1 that p* - ]E[“JLS—IS())] — E[1].
Provided that the approximation (41) holds in expectation with an error of order
o(p™®), we can gather the pieces and indeed deduce the desired convergence for
k = 1 by the calculation done in Section 4.1.

To justify (41), for our fixed 8 € (o, +1),lety,y’ > 1 besuchthatyd < a+1

1 1 _
and;—i-y—l,then

Ty ® Q) [ Ty ©)
B[us ) 200 | - BU?)| < B s 72 1] - U]
(Holder’s inequality)

T, Y
< E||us (O)L—p -1
- P
(Jensen’s inequality)

T, Y
< E[|us©@2Z 1] |7 B,
- 14
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The large deviation bound (13) and (14) imply that E[|u;s(0)7,/L, — 11”] tends
to 0 faster than p~®?'/4as p — oo. On the other hand, the above calculation shows
that ]E[Up(ye)] is of order p~*. Hence the right-hand side of the last display is of
order o(p~*/4~%/v). By choosing y close enough to 1 this can be made smaller
than p~*. This justifies our approximation (41).

Now assume that the convergence of the lemma takes place up to the k-th
generation and write

Ge(p) =E[ 3 (r~ 1P ).
lul=k

to simplify notation. Then there exists a constant C = C (k, 6) such that G (p) <C
for all p > 1, and for any ¢ > 0 there exists po such that for all p > po,

Gr(p) < pa(0)* + 5.

Using the Markov property of the gasket decomposition at the first generation we
get with the above two inequalities, for all p > 1,

6o = B[ 3 (“20) et i)

o ( ) .
< Got0)f + B[ 3 (220

i=1
L (p) (1)1 6
xP()
+CE[Z( > )]l{x(”)(i)<p0}]'
i=1

By the k = 1 case, the first term on the right-hand side is bounded using

E[i(X(I;(i))e]l{X(p)(i)Zpo}] = E[i()((l;(l))g] oo Pa (0).

0
) ]l{x(p)(i)zpo}]

As for the second term, fix 6’ € («, 6) then for p > po we can write

E[i (X([;(i))e]l{x(m(ikpo}] < (%)6_6/E[§ (X(p;("))el] —o.

i=1

by the k = 1 case proven above (with 6 replaced by #’). Taking the limits p — oo

and then ¢ — 0, we get the upper bound
limsup Gy 11(p) < ¢a(6)*+",

p—>00

whereas the lower bound liminf, e Gi11(p) > ¢a(0)KT! is trivial from the
finite-dimensional convergence together with Fatou’s lemma. O
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Proof of Proposition 5.2. Since the identity function ¢: £9 (U ) — 29" (Uy) is con-
tinuous for all & < @', it suffices to prove the convergence in distribution for all 6
close enough to «. Fix 0 € (¢, + 1) and k > 1. Since

B[ Y (Za@)?] = 14 ¢a(0) + -+ + da(0) < 0,

uely

for any ¢ > O there is a finite subset V' C Uy such that

E[ Z(Za(u))e] <.

uelUy \V

According to the convergence in Lemma 5.3, we have

lim sup E[ Z(p_l)((p)(u))e] <l 42)

poo uelg\V
Now if f:£%(Ux) — Ry is a bounded K-Lipschitz function we have

Ef(Z)] = E[f(Zalv)]| = K- E[|Zog — ZaTv 9]

(B Y za)
ueUi\V
=K,

and similarly E[f(p~' x?)] ~ E[f(p~ ¥ 1y)] up to an error of order ¢ as
p — oo. From the finite-dimensional convergence (Proposition 5.1) we deduce
that E[f(p~ ' xP1y)] — E[f(Zsly)] as p — oo. Put all together this shows
E[f(p~'xP)] = E[f(Z4)] as p — oo and proves the desired convergence in
distribution. O

5.3. £*° convergence. As we have already noticed, Proposition 5.2 implies the
convergence of p~1y(» — Z, in £%°(U;). However, it does not yet yield the
full convergence in £°°(U) and the missing estimate is of the form: for any ¢ > 0,
there exists an integer k such that

limsup P(Ju € U\ Ug: P () > ep) < e. (43)

p—>00
In other words, the labels beyond generation k are uniformly small when k is large.
Notice that if we had replaced p~' y(” by the limiting cascade Z, the estimate
would be immediate: by the remark after (20), the process (Z,) almost surely
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belongs to £7(U) for a certain & > 0. Our way to prove (43) is similar as in the
continuous case and we want to find a supermartingale of the form

(X ra@w), .

|lu|=k

where f is an increasing function. The underlying quadrangulation model pro-
vides us naturally one such supermartingale: for p > 1, let V(p) be the expected
volume (i.e. number of vertices) of a random loop-decorated quadrangulation of
distribution IPffz,,h. Then the gasket decomposition (Section 2.1) immediately
shows that we have the strict inequality for all p:

B[ 3 VG2 @) ] < V). (44)
i=1

In particular, (), 1= V(x‘?(u)). k > 0) is indeed a supermartingale for the dis-
crete cascade. Timothy Budd recently proved the following asymptotics of V(p).

Theorem A ([16]). For a set of non-generic critical parameters (n; g, h),

V(p) ~ Ap¥,

p—>00

where 0, = max(2o — 1,2) and A > 0 is some constant depending on (n; g, h).

With this estimate, one can proceed to the proof of Theorem 1.1.

Proof of the £>°(U) convergence. Recall that we assume n < 2, so that o # % and
inf ¢ < 1. Choose 8 such that ¢ (6) < 1. Then by Lemma 5.3, there exist finite
constants C, po and ¢ < 1 such that

> C forall p>1
E L@yl | < - (45)
[;(p 1) ]_ ¢ forall p> po.

Now let us deduce from this inequality that the 6-moment decreases exponentially
as long as the labels do not drop below pg too often. To make this idea precise,
for u € U let No(u) be the number of ancestors of ¥ which have a label smaller
than po. The following lemma controls the size of y?) (1) depending on whether
No(u) is smaller or greater than a threshold m.

Lemma 5.4. (1) With the constants C, ¢ given in (45),

E( Z (X(p)(u))ell{No(u)sm}]Ecmck_m forallk >m=>0. (46)
uelW:|u|l=k P
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(2) Consider the set of vertices L,, = inf{u € WU: No(u) > m} where the
infimum of a subset U C U is defined by

inf U = {u € U:u has no ancestor in U }.

Then there exists ¢ < 1 such that for all p and m,

E[ Y VG 2wy =&t p). @)

uel,,

Summing (46) over [ > k gives

]E[ Z (X(p;(u))g]l{No(u)SWl}]' = Zcka_m - (%)
I>k

ueU\ Uy

m ck+1

1—c

By Markov’s inequality, the previous display and (47) imply respectively

0 C mck+1
P@Eu € U\ Uy: No(u) < m and y P (u) > ep) < &~ (?)

1-c
and
PEu € U: No(u) > m and xP () > ep) = P@u € Ly P (1) > ep)
V)
V(ep)
Take the sum of the two inequalities and use the regular variation of ¥ to show
that

<

m ck+1

C
limsup P(Ju € U\ Ug: xP (1) > ep) < 5_9<—) + ¢mg0a
c

p—>00 1—-c
The right-hand side tends to zero when k, m — oo under the constraint
k1 —1
— = 8- — 98¢ € —loge + &.
m —logc
This proves the bound (43) and the £°°(U) convergence in Theorem 1.1 modulo
Lemma 5.4. O

Proof of Lemma 5.4. We prove the bound (46) by induction on k. We write

(02] 0

X (u)

Mk,m(p):E[ > ( )1{No(u)sm}]
uell:|u|=k p

to simplify notation. In the case k = 1 (and m € {0, 1}) the only ancestor of the
first generation is the root and the estimate follows from (45). If k > 1, then we
have the following case.
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e If p > po, then for all i > 1 and u € U, we have No(iu) = N()(i)(u), where
Né’) is a copy of the function N, defined on the sub-tree rooted at the vertex i.
It follows that

AN 1P (iu)\ 0
M"“’m(”):E[Z( » ) 2 ()((”)(i)) ]l{Né"’(u)sm}]
i=1 uel:|u|l=k
(Markov property of the cascade)
e X(p)(i) 6 )¢
= B[ 2 (F52) MenP0))]
i=1

(induction hypothesis)

o0
6
< C’"c"‘mE[Z (p_lx(”)(i)) ]
i=1
< Cka+1_m.

o If p < py, then Ny(iu) = Néi)(u) + 1 and hence for m > 1,

Wi = B[ 3 (F2D) M6 00)]

i=1

< Cm_lck_(m_l)E[ i(p_lx(p) (l))e]

i=1

< Cmck-f—l—m‘

For m = 0, we have My,,0(p) = 0 since p < po. This completes the
induction.

Let us move to the second point of the lemma. To show (47), first remark
that (44) implies the existence of a constant ¢ < 1 such that

E[ Y VP = ev(p) (48)
i=1

forall p < po. To simplify notation, we will write V(U) = E[¥ ey V(1P (u))]
for any subset U C U.

Fork > 1,let Ly = inf{u € U: No(u) > k} and L = {uizu € Ly, i € N*}
(L,': is the set of children of Lj). From the definition of Ny(.) it is not hard to see
that y‘P)(u) < po for all u € L. The random sets Lg, L; are so-called optional
lines for the filtration generated by the process y? (see e.g. [10]) and we have

(@) =Lo<L{ =L <Ly <Ly<Lf<L3=<--
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where we used the partial order on the subsets of U defined by U =< U if each
vertex u € U either is in U or has an ancestor in U. On the one hand, by general
theory on optional lines, if L < L’ are two optional lines then I7(L) > I7(L/ ). On
the other hand, since )((1’) (u) < po for all u € L; we can use (48) to deduce that

o0

V(Lk)—E[ung(Xp(u)) E[; V() ]qzx(p)(u)

] < &V (Ly).
Gathering the two inequalities we indeed deduce that L,,+; < &V (L) =
&V (p), as desired. O

Appendix A. Relation with other nesting statistics

In this section, we outline the relation of our work to the recent work by Borot,
Bouttier and Duplantier [11] about the number of loops surrounding a typical
vertex in an O(n)-decorated random planar map and to analogous quantities in
conformal loop ensembles.

Number of loops surrounding a typical vertex in the O(n)-decorated quad-
rangulation. We consider a random pointed quadrangulation of (large) perime-
ter p decorated with an O(n) loop model, as defined in the introduction of the
main text. Borot, Bouttier and Duplantier [11] have studied the large deviations
of the number of loops surrounding the marked vertex, by methods from analytic
combinatorics. With our notation, their result reads as follows:

Theorem B ([11], Theorem 2.2). Let N denote the number of loops surrounding
the marked vertex. Then, for all x > 0, as p — o0,

1
oz p logP(N = |[xlog p]) — —;J(nx),

where

J(x) = xlog ( ) + arccot(x) — arccos (%)

2 X
n 1+ x2
In fact, the result in [11] is more precise in that the authors actually give an

asymptotic equivalent for P(N = |xlog p|). Also note that there is a mistake in
the definition of the function J in [11] (the first x factor is missing).
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We now sketch how we can heuristically recover this result from the continuous
multiplicative cascade Z, of Theorem 1.1. Let § > 0 be a small constant. We
define L5 to be the set of those vertices u in the Ulam tree for which Z,(u) < §
and Z,(v) > § for every ancestor v of u. (£g is an optional line, see the proof
of Lemma 5.4.) In the discrete setting, these vertices correspond to loops in
an O(n)-decorated quadrangulation of perimeter p whose perimeter is smaller
than §p, but the loops surrounding them have perimeter larger than §p.

Similarly to the definition of the martingale W, («, 6) in (19) we now define

Wh(e, 0) = Zo(u)?pa(0) ),

uelysy

where as usual, |u| denotes the generation of a vertex u in the Ulam tree. One can
then show (for example with the methods from [10]) that E[W?(«, )] = 1 for
every 0 € (o, argming ¢o(6)) = (o, + 3).

As a consequence, we have for such 6,

| = E[W%(a, 0)] = E[ 3 za(u)%a(e)—'"'] ~ SGE[ Z%(@)—'“'].
uel uelysy
Now, as said before, every u € Lg roughly corresponds to a loop in the O (r) model
of perimeter dp and |u| is then the number of loops surrounding it. Assuming we
could take § = % this suggests that

B[ Y 6@V ]~ p¥. 0 € (ot %) (49)

where the sum is on the vertices of the loop-decorated quadrangulation and N (v)
is the number of loops separating the vertex v from the outerface.

We now write (49) in a different form in order to link it to Theorem B. First
recall from Section 4.2 (or Theorem A) that the volume of the O(n)-decorated
quandrangulation scales as p%, where 6y = min(2, 2o — 1). Equation (49) is then
equivalent to

~N7 o 6-60 1
Ela(®) M~ p*%. 0 (aa+3),

where N, as in Theorem B, is now the number of loops surrounding the marked
vertex in a pointed O(n)-decorated quadrangulation. This allows to express the
moment generating function of N by

E[e*V] ~ pe®), (50)

where Ky (1) = ¢ (e™) — 6y, with ¢! the inverse of the restriction of ¢y to
(a,a + %) and A < —logming ¢y (6).
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Now, (4) gives sin(m(2—a)) = 5 and 6p —a = 7" arcsin (
express ky by

Ke(A) = %(arcsin (%el) — arcsin (%))

= %(arecos (%) — arccos (%e*)) for A < log (%)

kq(A) = 400 for A > log (%)

%), so that we can

(51

and

by convexity.
Equation (50) now suggests that for every x > 0, as p — oo,

ogp logP(N = |xlog p]) —> —kg (%),

where k) (x) = sup;p{Ax — kq(x)} is the Legendre—Fenchel transform of the
function «,. Using the explicit expression in (51), a simple calculation shows:

1
Ky(x) = ;J(nx), x>0,

where J is the function from Theorem B. This establishes (again, heuristically)
that theorem.

Number of loops in a conformal loop ensemble surrounding a small Eu-
clidean ball. We now show how one can heuristically relate (49) to a similar
statement for the number of loops in a conformal loop ensemble in the unit disk
surrounding a small Euclidean ball, thereby recovering (again heuristically) a re-
sult by Miller, Watson and Wilson [37]. The argument is similar to the one by
Borot, Bouttier and Duplantier [11]. Recall from the introduction that it is con-
jectured that in an O(n)-decorated quadrangulation with a boundary, the volume
measure together with the loops converges in some sense to the so-called Liouville
quantum disk (with parameter y = /k) together with an independent CLE, in the
disk, where « is related to our parameter « by o — % = % — 1 (see (5)). For sim-
plicity, we restrict ourselves to the dilute case (@ > % or % < k < 4). The result
from [37] is the following. Let N, denote the number of CLE, loops surrounding

a fixed Euclidean ball of radius r < 1. Then [37],
E[e ()] ~ 70, (52)

where

%(9) =

~cos (%) cos (7 (@ - 3)) (53)

cos(n\/(l—%) —79 cos ( JT\/(X—— 020(—1)).
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This function appeared already in [41]. Note that we can express it as

n®) = a1+ [(1- 1) =), (54)

K K

where ¢, is the Biggins transform of the multiplicative cascade Z,,.

Here is an explanation for the relation (54). Denote by u, the Liouville quan-
tum gravity measure in the disk. We can then discretize the disk into blocks of
We-mass approximately §2, for example by a dyadic decomposition as in [22].
Such a block is then the analogue of a vertex of the O(n)-decorated quadrangula-
tion of perimeter p, with § = % (recall that in the dilute phase, the volume scales
like the perimeter squared).

For each ¢ > 0, denote by v 51/c the number of blocks of diameter approxi-
mately §'/¢. It is implicit in [22] that

Vg §1/c R 5—2+§(c—(1_,(/4))2. 5

For each block b, denote by N (b) the number of CLE loops surrounding the block.
Equations (52) and (55) suggest that
IE[ > @)V <”)] ~ Sup vg 51/2¢ X B[ (0) Naie]
b c>0

~ sup §2+ G (e—(1—k/4)* =4

c>0

A simple calculation shows that

inf£<c—(l—£>>2—§:1—i+ (1—f)2—%,

c>0 CcK 4 P P p
for 6 small enough. This gives
E[ Yy (6) ¥ w g1 VO 6
b

On the other hand, by (49) we expect that
E[ > o (é)—ﬁ@] ~ 670, (57)
b

for §~e (o + %) Comparing (56) and (57) suggests that ¥,.(8) = ¢4(0) if 6
and 6 are related through

x| &
|

/N
it
|

| &

N—
[\S)
|

|oo
S

=1+

This readily implies (54).
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