[Un réexamen du Commentatio Mathematica de Riemann]
Starting with the publication of Riemann's Gesammelte Mathematische Werke in 1876, the Commentatio Mathematica has attracted considerable interest among mathematicians and historians. Nonetheless, there appears to be no consensus on the most appropriate approach to the interpretation of the paper, namely on its relationship with Riemann's Habilitationsvortrag.
This article represents a contribution to such an interesting debate. Special attention is paid to the pars secunda of Riemann's Commentatio. In particular, the focus is on the interpretation of a certain trinomial expression from which Riemann claimed that an understanding of his “curvature tensor” could be achieved.
À commencer avec la publication des œuvres de Riemann en 1876, la Commentatio Mathematica de Riemann a suscité beaucoup d'intérêt parmi les mathématiciens et les historiens. Il semble pourtant qu'aucun consensus sur la bonne lecture de ce texte en rapport avec le Habilitationsvorstrag de Riemann ne se soit dégagé. Cet article contribue à ce débat intéressant. Nous prêtons particulièrement attention à la pars secunda, nous centrons notre interprétation autour d'une certaine expression trinomiale dont Riemann prétend qu'elle permet de comprendre le « tenseur de courbure » .
Keywords: Riemann, metric geometry, tensor calculus, curvature tensor
Mots-clés : Riemann, géométrie métrique, calcul tensoriel, tenseur de courbure
@article{RHM_2014__20_1_73_0,
author = {Cogliati, Alberto},
title = {Riemann's {\protect\emph{Commentatio} {Mathematica},} a reassessment},
journal = {Revue d'histoire des math\'ematiques},
pages = {73--94},
year = {2014},
volume = {20},
number = {1},
doi = {10.24033/rhm.179},
mrnumber = {3245150},
zbl = {1305.01027},
language = {en},
url = {https://www.numdam.org/articles/10.24033/rhm.179/}
}
Cogliati, Alberto. Riemann's Commentatio Mathematica, a reassessment. Revue d'histoire des mathématiques, Tome 20 (2014) no. 1, pp. 73-94. doi: 10.24033/rhm.179
Ueber das Riemann'sche Krümmungsmaß höherer Mannigfaltigkeiten, Zeitschrift für Mathematik und Physik, Volume 24 (1879) | JFM
Lezioni di Geometria Differenziale, I, Spoerri, Pisa, 1902 | JFM
Naturphilosophie and its role in Riemann's mathematics, Revue d'histoire des mathématiques, Volume 1 (1995), pp. 3-38 | MR | Zbl | Numdam
Ricci and Levi-Civita: from differential invariants to general relativity, The Symbolic Universe: Geometry and Physics 1890–1930 (Gray, J., ed.), Oxford Univ. Press, Oxford (1999), pp. 241-259 | MR | Zbl | DOI
Über die Transformation homogener Differentialausdrücke zweiten Grades, Journal für die reine und angewandte Mathematik, Volume 70 (1869), pp. 46-70 | MR | JFM
On the genesis of the concept of covariant differentiation, Revue d'histoire des mathématiques, Volume 2 (1996), pp. 215-264 | MR | Zbl | Numdam
The Missing Link: Riemann's “Commentatio,” Differential Geometry and Tensor Analysis, Historia Mathematica, Volume 17 (1990), pp. 223-255 | MR | Zbl | DOI
Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press, Oxford, 1972 | MR | Zbl
Opere Matematiche, Zanichelli, Bologna, 1954–1973
Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana, Rendiconti del Circolo Matematico di Palermo, Volume 42 (1917), pp. 173-205 (; also in IV, 1-39. All the references refer to FIXME ) | JFM | DOI
Untersuchungen in Betreff der ganzen homogenen Functionen von Differentialen, Journal für die reine und angewandte Mathematik, Volume 70 (1869), pp. 71-102 | MR | JFM
Bemerkungen zu dem Prinzip des kleinsten Zwanges, Journal für die reine und angewandte Mathematik, Volume 82 (1876), pp. 316-342 | MR | JFM
Levi-Civitasche Parallelverschiebung, affiner Zusammenhang, Übertragungsprinzip: 1916/17–1922/23, Archive for History of Exact Sciences, Volume 44 (1992), pp. 77-105 | MR | Zbl | DOI
Die Entwicklung des Tensorkalküls, Birkhäuser, Boston, 1994 | MR | DOI
Méthodes de calcul différentiel et leurs applications, Mathematische Annalen, Volume 54 (1900), pp. 125-201 | MR | JFM | DOI
Gesammelte mathematische Werke und wissenschaftlicher Nachlass (Weber, Heinrich, ed.), Teubner, 1876 ; 2nd ed. 1892; repr. New York: Springer, 1991. (When not explicitly mentioned, all the references refer to the 1876 edition) | JFM
Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, Gesammelte mathematische Werke (Weber, Heinrich, ed.), Teubner, Leipzig (1854), pp. 254-269 | JFM
Commentatio mathematica, qua respondere tentatur quaestioni ab Illma Academia Parisiensi propositae, Gesammelte mathematische Werke (Weber, Heinrich, ed.), Teubner, Leipzig (1861), pp. 370-383
Üeber die Hypothesen, welche der Geometrie zu Grunde liegen. Neu herausgegeben und erläutert von H. Weyl, Julius Springer, Berlin, 1919 | JFM
A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley, 1979 | MR | Zbl
Outline of a history of differential geometry II, Isis, Volume 20 (1933), pp. 161-191 | JFM | Zbl | DOI
Cité par Sources :





