Holomorphic Riemannian metric and the fundamental group
[Métrique riemannienne holomorphe et groupe fondamental]
Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 455-468

We prove that compact complex manifolds bearing a holomorphic Riemannian metric have an infinite fundamental group.

Nous démontrons que les variétés complexes compactes admettant une métrique riemannienne holomorphe ont un groupe fondamental infini.

DOI : 10.24033/bsmf.2789
Classification : 53B30, 53C50, 53A55
Keywords: holomorphic Riemannian metric, algebraic dimension, Killing fields, fundamental group
Mots-clés : métrique riemannienne holomorphe, dimension algébrique, champs de Killing, groupe fondamental

Biswas, Indranil 1 ; Dumitrescu, Sorin 2

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
2 Université Côte d’Azur, CNRS, LJAD
@article{BSMF_2019__147_3_455_0,
     author = {Biswas, Indranil and Dumitrescu, Sorin},
     title = {Holomorphic {Riemannian} metric and the fundamental group},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {455--468},
     year = {2019},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {147},
     number = {3},
     doi = {10.24033/bsmf.2789},
     zbl = {1429.53086},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2789/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Dumitrescu, Sorin
TI  - Holomorphic Riemannian metric and the fundamental group
JO  - Bulletin de la Société Mathématique de France
PY  - 2019
SP  - 455
EP  - 468
VL  - 147
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2789/
DO  - 10.24033/bsmf.2789
LA  - en
ID  - BSMF_2019__147_3_455_0
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Dumitrescu, Sorin
%T Holomorphic Riemannian metric and the fundamental group
%J Bulletin de la Société Mathématique de France
%D 2019
%P 455-468
%V 147
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2789/
%R 10.24033/bsmf.2789
%G en
%F BSMF_2019__147_3_455_0
Biswas, Indranil; Dumitrescu, Sorin. Holomorphic Riemannian metric and the fundamental group. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 455-468. doi: 10.24033/bsmf.2789

Amores, A. M. Vector fields of a finite type G-structure, Jour. Diff. Geom., Volume 14 (1980), pp. 1-6 | MR | Zbl

Atiyah, M. F. Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207 | MR | Zbl | DOI

Biswas, I.; Dumitrescu, S. Fujiki class 𝒞 and holomorphic geometric structures, arXiv: 1805.11951 | Zbl

Biswas, I.; Dumitrescu, S. Holomorphic Affine Connections on Non-Kähler manifolds, Internat. J. Math., Volume 27 (2016) | Zbl | DOI

Beauville, A. Variétés kähleriennes dont la première classe de Chern est nulle, Jour. Diff. Geom., Volume 18 (1983), pp. 755-782 | MR | Zbl

Cascini, P. Rational curves on complex manifolds, Milan Jour. Math., Volume 81 (2013), pp. 291-315 | MR | Zbl | DOI

D’Ambra, G.; Gromov, M. Lectures on transformations groups: geometry and dynamics, Cambridge MA, 1991 | Zbl

Dumitrescu, S. Meromorphic almost rigid geometric structures, Geometry, Rigidity and Group Actions (Farb, B.; Fisher, D., eds.), Chicago Lectures in Mathematics Series, 2001, pp. 32-58 | Zbl

Dumitrescu, S. Structures géométriques holomorphes sur les variétés complexes compactes, Ann. Scient. Éc. Norm. Sup, Volume 34 (2001), pp. 558-571 | Zbl | MR | Numdam

Dumitrescu, S. Homogénéité locale pour les métriques riemanniennes holomorphes en dimension 3, Ann. Inst. Fourier, Volume 57 (2007), pp. 739-773 | Zbl | MR | Numdam | DOI

Dumitrescu, S.; Zeghib, A. Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds, Math. Ann., Volume 345 (2009), pp. 53-81 | MR | Zbl | DOI

Enoki, I. Generalizations of Albanese mappings for non-Kähler manifolds, Geometry and analysison complex manifolds (et al., Mabuchi, ed.), World Scientific, Singapore, 1994, pp. 201-217 | Zbl

Frances, C. Variations on Gromov’s open-dense orbit theorem, Bull. Soc. Math. France, Volume 146 (2018), pp. 713-744 | MR | Zbl | Numdam | DOI

Ghys, E. Déformations des structures complexes sur les espaces homogènes de SL(2,) , Jour. Reine Angew. Math., Volume 468 (1995), pp. 113-138 | MR | Zbl

Gromov, G. Rigid Transformations Groups, Géométrie Différentielle, Volume 33 (1980), pp. 247-264 | MR

Inoue, M.; Kobayashi, S.; Ochiai, T. Holomorphic affine connections on compact complex surfaces, Jour. Fac. Sci. Univ. Tokyo, Volume 27 (1980), pp. 247-264 | MR | Zbl

Kobayashi, S. Transformation groups in differential geometry, Springer, 1995 | MR | Zbl

LeBrun, C. -spaces with cosmological constant, Proc. Royal Soc. London, Ser. A, Volume 380 (1982), pp. 171-185 | MR | Zbl

Moishezon, B. On n dimensional compact varieties with n independent meromorphic functions, Amer. Math. Soc. Transl., Volume 63 (1967), pp. 51-77 | Zbl

Nomizu, K. On local and global existence of Killing vector fields, Ann. of Math., Volume 72 (1960), pp. 105-120 | MR | Zbl | DOI

Rosenlicht, M. A remark on quotient spaces, An. Acad. Bras. Cienc., Volume 35 (1963), pp. 483-489 | MR | Zbl

Ueno, K. Classification of algebraic varieties, I, Compositio Math., Volume 27 (1973), pp. 277-342 | Zbl | Numdam | MR

Ueno, K. Classification theory of algebraic varieties and compact complete spaces, Springer Lectures Notes, Volume 439 (1975) | MR | Zbl

Wang, H.-C. Complex Parallelizable manifolds, Proc. Amer. Math. Soc., Volume 5 (1954), pp. 771-776 | Zbl | DOI

Yau, S.T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | MR | Zbl | DOI

Cité par Sources :