[Une preuve de la version -adique de la conjecture de l’identité intégrale pour des polynômes]
It is well known that the integral identity conjecture is of prime importance in Kontsevich-Soibelman’s theory of motivic Donaldson-Thomas invariants for non-commutative Calabi-Yau threefolds. In this article we consider its numerical version and give a complete demonstration of the case where the potential is a polynomial and the ground field is algebraically closed. The fundamental tool is the Berkovich spaces whose crucial point is how to use the comparison theorem for nearby cycles as well as the Künneth isomorphism for cohomology with compact support.
Il est bien connu que la conjecture de l’identité intégrale est de première importance de la théorie de Kontsevich-Soibelman des invariants de Donaldson-Thomas motiviques pour des variétés de Calabi-Yau de dimension 3 non commutatives. Dans cet article nous considérons sa version numérique et donnons une complète démonstration dans le cas où le potentiel est un polynôme et le corps de base est algébriquement clos. L’outil fondamental pour la preuve est les espaces de Berkovich dont le point crucial est l’utilisation du théorème de comparaison entre des cycles proches ainsi que l’isomorphisme de Künneth en cohomologie à support compact.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2785
Keywords: Berkovich spaces, étale cohomology for Berkovich spaces, formal scheme, formal nearby cycles functor, generic fiber, motivic Milnor fiber
Mots-clés : Espaces de Berkovich, la cohomologie étale des espaces de Berkovich, schéma formel, des cycles proches formels, fibre générique, fibre de Milnor motivique
Thuong, Lê Quy 1
@article{BSMF_2019__147_3_355_0,
author = {Thuong, L\^e Quy},
title = {A proof of the $\ell $-adic version of the integral identity conjecture for polynomials},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {355--375},
year = {2019},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {3},
doi = {10.24033/bsmf.2785},
mrnumber = {4030543},
zbl = {1441.14070},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2785/}
}
TY - JOUR AU - Thuong, Lê Quy TI - A proof of the $\ell $-adic version of the integral identity conjecture for polynomials JO - Bulletin de la Société Mathématique de France PY - 2019 SP - 355 EP - 375 VL - 147 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2785/ DO - 10.24033/bsmf.2785 LA - en ID - BSMF_2019__147_3_355_0 ER -
%0 Journal Article %A Thuong, Lê Quy %T A proof of the $\ell $-adic version of the integral identity conjecture for polynomials %J Bulletin de la Société Mathématique de France %D 2019 %P 355-375 %V 147 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2785/ %R 10.24033/bsmf.2785 %G en %F BSMF_2019__147_3_355_0
Thuong, Lê Quy. A proof of the $\ell $-adic version of the integral identity conjecture for polynomials. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 355-375. doi: 10.24033/bsmf.2785
Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monograph, Volume 33 (1990) | MR | Zbl
Étale cohomology for non-Archimedean analytic spaces, Publ. Math. Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-171 | MR | Zbl | Numdam | DOI
Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994), pp. 539-571 | MR | Zbl | DOI
Vanishing cycles for formal schemes II, Invent. Math., Volume 124 (1996), pp. 367-390 | MR | Zbl | DOI
Vanishing cycles for non-Archimedean analytic spaces, J. Amer. Math. Soc., Volume 9 (1996), pp. 1187-1209 | MR | Zbl | DOI
Cohomologie étale, Lectures Notes in Math., Volume 569 (1977) | MR | Zbl
Geometry on arc spaces of algebraic varieties, Progr. Math., Volume 201 (2001), pp. 327-348 | MR | Zbl | DOI
Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999), pp. 201-232 | MR | Zbl | DOI
Éléments de Géométrie Algébrique: I. Le language des Schémas, Publ. Math. Inst. Hautes Étud. Sci., Volume 4 (1960), pp. 5-228 | MR | Numdam | Zbl | DOI
Stability structures, motivic Donalson-Thomas invariants and cluster transformations, arXiv: 0811.2435vl
Motivic Donaldson-Thomas invariants: summary of results, Mirror symmetry and tropical geometry, 55–89, Contemp. Math., 527, Amer. Math. Soc. (2010) | MR | Zbl | DOI
On a conjecture of Kontsevich and Soibelman, Algebra & Number Theory, Volume 6 (2012), pp. 389-404 | MR | Zbl | DOI
Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J., Volume 164 (2015), pp. 157-194 | MR | Zbl
Equivariant motivic integration and proof of the integral identity conjecture for regular functions, arXiv: 1802.02377 | MR | Zbl
Cohomology of locally closed semi-algebraic subsets, Manuscripta Mathematica, Volume 144 (2014), pp. 373-400 | MR | Zbl | DOI
A tropical motivic Fubini theorem with applications to Donaldson-Thomas theory, Duke Math. J., arXiv: 1703.10228 | MR | Zbl
Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math., Volume 219 (2008), pp. 488-522 | MR | Zbl | DOI
Introduction to Berkovich analytic spaces, Berkovich spaces and applications, Lecture Notes in Math., Volume 2119 (2015), pp. 3-66 | MR | Zbl | DOI
Derived Hall algebras, Duke Math. J., Volume 135 (2006), pp. 587-615 | MR | Zbl | DOI
Cité par Sources :






