A proof of the -adic version of the integral identity conjecture for polynomials
[Une preuve de la version -adique de la conjecture de l’identité intégrale pour des polynômes]
Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 355-375

It is well known that the integral identity conjecture is of prime importance in Kontsevich-Soibelman’s theory of motivic Donaldson-Thomas invariants for non-commutative Calabi-Yau threefolds. In this article we consider its numerical version and give a complete demonstration of the case where the potential is a polynomial and the ground field is algebraically closed. The fundamental tool is the Berkovich spaces whose crucial point is how to use the comparison theorem for nearby cycles as well as the Künneth isomorphism for cohomology with compact support.

Il est bien connu que la conjecture de l’identité intégrale est de première importance de la théorie de Kontsevich-Soibelman des invariants de Donaldson-Thomas motiviques pour des variétés de Calabi-Yau de dimension 3 non commutatives. Dans cet article nous considérons sa version numérique et donnons une complète démonstration dans le cas où le potentiel est un polynôme et le corps de base est algébriquement clos. L’outil fondamental pour la preuve est les espaces de Berkovich dont le point crucial est l’utilisation du théorème de comparaison entre des cycles proches ainsi que l’isomorphisme de Künneth en cohomologie à support compact.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2785
Classification : 14B20, 14B25, 14F20, 14F30, 14N35, 18E25
Keywords: Berkovich spaces, étale cohomology for Berkovich spaces, formal scheme, formal nearby cycles functor, generic fiber, motivic Milnor fiber
Mots-clés : Espaces de Berkovich, la cohomologie étale des espaces de Berkovich, schéma formel, des cycles proches formels, fibre générique, fibre de Milnor motivique

Thuong, Lê Quy 1

1 Department of Mathematics, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
@article{BSMF_2019__147_3_355_0,
     author = {Thuong, L\^e Quy},
     title = {A proof of the $\ell $-adic version of the integral identity conjecture for polynomials},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {355--375},
     year = {2019},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {147},
     number = {3},
     doi = {10.24033/bsmf.2785},
     mrnumber = {4030543},
     zbl = {1441.14070},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2785/}
}
TY  - JOUR
AU  - Thuong, Lê Quy
TI  - A proof of the $\ell $-adic version of the integral identity conjecture for polynomials
JO  - Bulletin de la Société Mathématique de France
PY  - 2019
SP  - 355
EP  - 375
VL  - 147
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2785/
DO  - 10.24033/bsmf.2785
LA  - en
ID  - BSMF_2019__147_3_355_0
ER  - 
%0 Journal Article
%A Thuong, Lê Quy
%T A proof of the $\ell $-adic version of the integral identity conjecture for polynomials
%J Bulletin de la Société Mathématique de France
%D 2019
%P 355-375
%V 147
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2785/
%R 10.24033/bsmf.2785
%G en
%F BSMF_2019__147_3_355_0
Thuong, Lê Quy. A proof of the $\ell $-adic version of the integral identity conjecture for polynomials. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 355-375. doi: 10.24033/bsmf.2785

Berkovich, V. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monograph, Volume 33 (1990) | MR | Zbl

Berkovich, V. Étale cohomology for non-Archimedean analytic spaces, Publ. Math. Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-171 | MR | Zbl | Numdam | DOI

Berkovich, V. Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994), pp. 539-571 | MR | Zbl | DOI

Berkovich, V. Vanishing cycles for formal schemes II, Invent. Math., Volume 124 (1996), pp. 367-390 | MR | Zbl | DOI

Berkovich, V. Vanishing cycles for non-Archimedean analytic spaces, J. Amer. Math. Soc., Volume 9 (1996), pp. 1187-1209 | MR | Zbl | DOI

Deligne, P. et al. Cohomologie étale, Lectures Notes in Math., Volume 569 (1977) | MR | Zbl

Denef, J.; Loeser, F. Geometry on arc spaces of algebraic varieties, Progr. Math., Volume 201 (2001), pp. 327-348 | MR | Zbl | DOI

Denef, J.; Loeser, F. Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999), pp. 201-232 | MR | Zbl | DOI

Grothendieck, A.; Dieudonné, J. Éléments de Géométrie Algébrique: I. Le language des Schémas, Publ. Math. Inst. Hautes Étud. Sci., Volume 4 (1960), pp. 5-228 | MR | Numdam | Zbl | DOI

Kontsevich, M.; Soibelman, Y. Stability structures, motivic Donalson-Thomas invariants and cluster transformations, arXiv: 0811.2435vl

Kontsevich, M.; Soibelman, Y. Motivic Donaldson-Thomas invariants: summary of results, Mirror symmetry and tropical geometry, 55–89, Contemp. Math., 527, Amer. Math. Soc. (2010) | MR | Zbl | DOI

Lê, Q. T. On a conjecture of Kontsevich and Soibelman, Algebra & Number Theory, Volume 6 (2012), pp. 389-404 | MR | Zbl | DOI

Lê, Q. T. Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J., Volume 164 (2015), pp. 157-194 | MR | Zbl

Lê, Q. T.; Nguyen, H. D. Equivariant motivic integration and proof of the integral identity conjecture for regular functions, arXiv: 1802.02377 | MR | Zbl

Martin, F. Cohomology of locally closed semi-algebraic subsets, Manuscripta Mathematica, Volume 144 (2014), pp. 373-400 | MR | Zbl | DOI

Nicaise, J.; Payne, S. A tropical motivic Fubini theorem with applications to Donaldson-Thomas theory, Duke Math. J., arXiv: 1703.10228 | MR | Zbl

Temkin, M. Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math., Volume 219 (2008), pp. 488-522 | MR | Zbl | DOI

Temkin, M. Introduction to Berkovich analytic spaces, Berkovich spaces and applications, Lecture Notes in Math., Volume 2119 (2015), pp. 3-66 | MR | Zbl | DOI

Toën, B. Derived Hall algebras, Duke Math. J., Volume 135 (2006), pp. 587-615 | MR | Zbl | DOI

Cité par Sources :