[Non dégéneration de solutions non radiales qui changent de signe à l’équation non linéaire de Schrödinger]
We prove that the non-radial sign-changing solutions to the nonlinear Schrödinger equation
constructed by Musso, Pacard, and Wei [16] are non-degenerate. This provides the first example of a non-degenerate sign-changing solution to the above nonlinear Schrödinger equation with finite energy.
Nous prouvons que les solutions non radiales qui changent de signe à l’équation non linéaire de Schrödinger
qui ont été construits par Musso, Pacard, Wei [16] sont non dégénérées. Ceci fournit le premier exemple de solutions qui changent de signe à l’équation non linéaire de Schrödinger avec énergie finie.
Keywords: Schrödinger equation, sign-changing solution, orthogonality condition
Mots-clés : Non-degeneracy, sign-changing solution, Schrodinger equation
Ao, Weiwei 1 ; Musso, Monica 2, 3 ; Wei, Juncheng 4
@article{BSMF_2019__147_1_1_0,
author = {Ao, Weiwei and Musso, Monica and Wei, Juncheng},
title = {Nondegeneracy of nonradial sign-changing solutions to the nonlinear {Schr\"odinger} equation},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {1--48},
year = {2019},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {1},
doi = {10.24033/bsmf.2774},
mrnumber = {3943737},
zbl = {1437.35379},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2774/}
}
TY - JOUR AU - Ao, Weiwei AU - Musso, Monica AU - Wei, Juncheng TI - Nondegeneracy of nonradial sign-changing solutions to the nonlinear Schrödinger equation JO - Bulletin de la Société Mathématique de France PY - 2019 SP - 1 EP - 48 VL - 147 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2774/ DO - 10.24033/bsmf.2774 LA - en ID - BSMF_2019__147_1_1_0 ER -
%0 Journal Article %A Ao, Weiwei %A Musso, Monica %A Wei, Juncheng %T Nondegeneracy of nonradial sign-changing solutions to the nonlinear Schrödinger equation %J Bulletin de la Société Mathématique de France %D 2019 %P 1-48 %V 147 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2774/ %R 10.24033/bsmf.2774 %G en %F BSMF_2019__147_1_1_0
Ao, Weiwei; Musso, Monica; Wei, Juncheng. Nondegeneracy of nonradial sign-changing solutions to the nonlinear Schrödinger equation. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 1, pp. 1-48. doi: 10.24033/bsmf.2774
Solutions without any symmetry for semilinear elliptic problems, J. Func. Anal., Volume 270 (2016), pp. 884-956 | MR | Zbl | DOI
Nonlinear scalar field equations, II, Arch. Rat. Mech. Anal., Volume 82 (1981), pp. 347-375 | MR | Zbl | DOI
Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345 | MR | Zbl | DOI
Infinitely many radial solutions of a semilinear elliptic problem on , Arch. Rational Mech. Anal., Volume 124 (1993), pp. 261-276 | MR | Zbl | DOI
New solutions of equations on ., Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 30 (2002), pp. 535-563 | MR | Zbl | Numdam
Solutions of the focusing nonradial critical wave equation with the compactness property, Mathematics, Volume 15 (2014), pp. 731-808 | MR | Zbl
The Toda system and multiple-end solutions of autonomous planar elliptic problems, Advances in Mathematics, Volume 224 (2010), pp. 1462-1516 | MR | Zbl | DOI
Large energy entire solutions for the Yamabe equation, J. Differential Equations, Volume 251 (2011), pp. 2568-2597 | MR | Zbl | DOI
Torus action on and sign-changing solutions for conformally invariant equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 12 (2013), pp. 209-237 | MR | Zbl | Numdam
Symmetry and related properties via the maximun principle, Comm. Math. Phys., Volume 68 (1979), pp. 209-243 | MR | Zbl | DOI
An end-to-end construction for compact constant mean curvature surfaces, Pacific Journal of Maths, Volume 221 (2005), pp. 81-108 | MR | Zbl | DOI
Complete constant mean curvature surfaces in Euclidean three space, Ann. of Math., Volume 131 (1990), pp. 239-330 | MR | Zbl | DOI
Compact constant mean curvature surfaces, J. Differential Geometry, Volume 33 (1991), pp. 683-715 | MR | Zbl | DOI
On Circulant Matrices, Notices. Amer. Math. Soc., Volume 59 (2012), pp. 368-377 | MR | Zbl | DOI
Uniqueness of positive solutions of in , Arch. Rational Mech. Anal., Volume 105 (1989), pp. 243-266 | MR | Zbl | DOI
Uniqueness of the positive solution of in an annulus, Diff. Int. Eqns., Volume 4 (1991), pp. 583-599 | MR | Zbl
Symmetric and nonsymmetric solutions for an elliptic equation on , Nonlinear Anal., Volume 58 (2004), pp. 961-968 | MR | Zbl | DOI
Some new entire solutions of semilinear elliptic equations in , Adv. Math., Volume 221 (2009), pp. 1843-1909 | MR | Zbl | DOI
Finite energy sign changing solution with dihedral symmetry for the stationary non linear Schrödinger equation, Journal of European Mathematical Society, Volume 14 (2012), pp. 1923-1953 | MR | Zbl | DOI
Nondegeneracy of nonradial nodal solutions to Yamabe problem, Comm. Math. Phys., Volume 340 (2015), pp. 1049-1107 | MR | Zbl | DOI
Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., Volume 70 (1993), pp. 247-281 | MR | Zbl
Multiple solutions of differential equations without the Palais-Smale condition, Math. Ann., Volume 261 (1982), pp. 399-412 | MR | Zbl | DOI
New entire positive solution for the nonlinear Schrödinger equation: coexistence of fronts and bumps, American J. Math., Volume 135 (2013), pp. 443-491 | MR | Zbl | DOI
An embedded minimal surface with no symmetries, Journal of Diff. Geom., Volume 60 (2002), pp. 103-153 | MR | Zbl
Cité par Sources :






