[Linéarisation explicite de germes unidimensionnels par développement en arbres]
We explain Écalle’s “arbomould formalism” in its simplest instance, showing how it allows one to give explicit formulas for the operators naturally attached to a germ of holomorphic map in one dimension. When applied to the classical linearization problem of non-resonant germs, which contains the well-known difficulties due to the so-called small divisor phenomenon, this elegant and concise tree formalism yields compact formulas, from which one easily recovers the classical analytical results of convergence of the solution under suitable arithmetical conditions on the multiplier. We rediscover this way Yoccoz’s lower bound for the radius of convergence of the linearization and can even reach a global regularity result with respect to the multiplier (-holomorphy) which improves on Carminati-Marmi’s result.
Nous expliquons le formalisme des « arbomoules » d’Écalle dans le cas le plus simple et montrons comment il permet d’obtenir des formules explicites pour les opérateurs naturellement associés à un germe d’application holomorphe en une dimension. Dans le cadre du problème classique de la linéarisation des germes non résonants, qui contient la difficulté bien connue due au phénomène des petits diviseurs, ce formalisme élégant et concis reposant sur des arbres fournit des formules compactes, dont on déduit aisément les résultats analytiques classiques de convergence de la solution moyennant des conditions arithmétiques appropriées sur le multiplicateur. Nous retrouvons de cette façon la borne inférieure due à Yoccoz pour le rayon de convergence de la linéarisation et obtenons même un résultat de régularité globale par rapport au multiplicateur (-holomorphie) qui améliore un résultat de Carminati et Marmi.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2757
Keywords: Dynamical systems, linearization, small divisors, moulds, trees, arborification, monogenic functions.
Mots-clés : Systèmes dynamiques, linéarisation, petits diviseurs, moules, arbres, arborification, fonctions monogènes.
Fauvet, Frédéric 1 ; Menous, Frédéric 2 ; Sauzin, David 3
@article{BSMF_2018__146_2_241_0,
author = {Fauvet, Fr\'ed\'eric and Menous, Fr\'ed\'eric and Sauzin, David},
title = {Explicit linearization of one-dimensional germs through tree-expansions},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {241--285},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {2},
doi = {10.24033/bsmf.2757},
mrnumber = {3933876},
zbl = {1406.37042},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2757/}
}
TY - JOUR AU - Fauvet, Frédéric AU - Menous, Frédéric AU - Sauzin, David TI - Explicit linearization of one-dimensional germs through tree-expansions JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 241 EP - 285 VL - 146 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2757/ DO - 10.24033/bsmf.2757 LA - en ID - BSMF_2018__146_2_241_0 ER -
%0 Journal Article %A Fauvet, Frédéric %A Menous, Frédéric %A Sauzin, David %T Explicit linearization of one-dimensional germs through tree-expansions %J Bulletin de la Société Mathématique de France %D 2018 %P 241-285 %V 146 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2757/ %R 10.24033/bsmf.2757 %G en %F BSMF_2018__146_2_241_0
Fauvet, Frédéric; Menous, Frédéric; Sauzin, David. Explicit linearization of one-dimensional germs through tree-expansions. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 241-285. doi: 10.24033/bsmf.2757
Limit at resonances of linearizations of some complex analytic dynamical systems, Ergodic Theory Dynam. Systems, Volume 20 (2000), pp. 963-990 | DOI | MR | Zbl
Leçons sur les fonctions monogènes uniformes d’une variable complexe, Gauthier-Villars, 1917 | JFM
The Lagrange inversion formula on non-Archimedean fields. Non-analytical form of differential and finite difference equations, Discrete Contin. Dyn. Syst., Volume 9 (2003), pp. 835-858 | DOI | MR | Zbl
A primer of Hopf algebras, Frontiers in number theory, physics, and geometry. II, Springer, 2007, pp. 537-615 | DOI | MR | Zbl
On the theory of analytic forms called trees, Philosophical Magazine, Volume 13 (1857), pp. 172-176 (also in Collected Mathematical Papers of Arthur Cayley, vol. 3, p. 242–246, Cambridge Univ. Press, 1890)
Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., Volume 199 (1998), pp. 203-242 | DOI | MR | Zbl
Linearization of analytic and non-analytic germs of diffeomorphisms of , Bull. Soc. Math. France, Volume 128 (2000), pp. 69-85 | Numdam | MR | Zbl | DOI
There is only one KAM curve, Nonlinearity, Volume 27 (2014), pp. 2035-2062 | DOI | MR | Zbl
The critical function for the semistandard map, Nonlinearity, Volume 7 (1994), pp. 219-229 http://stacks.iop.org/0951-7715/7/219 | MR | Zbl | DOI
Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble), Volume 42 (1992), pp. 73-164 | Numdam | MR | Zbl | DOI
Absolutely convergent series expansions for quasi periodic motions, Math. Phys. Electron. J., Volume 2 (1996), p. Paper 4 | MR | Zbl
Ecalle’s arborification-coarborification transforms and Connes-Kreimer Hopf algebra, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017), pp. 39-83 | DOI | MR | Zbl | Numdam
Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math., Volume 126 (2002), pp. 249-288 | DOI | MR | Zbl
Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number, Bol. Soc. Brasil. Mat., Volume 16 (1985), pp. 45-83 | DOI | MR | Zbl
Recent results and some open questions on Siegel’s linearization theorem of germs of complex analytic diffeomorphisms of near a fixed point, VIIIth international congress on mathematical physics (Marseille, 1986), World Sci. Publishing, 1987, pp. 138-184 | MR
An introduction to the theory of numbers, The Clarendon Press, Oxford Univ. Press, 1979, 426 pages | MR | Zbl
Continued fractions, The University of Chicago Press, Chicago, Ill.-London, 1964, 95 pages | MR | Zbl
A short survey on pre-Lie algebras, Noncommutative geometry and physics: renormalisation, motives, index theory (ESI Lect. Math. Phys.), Eur. Math. Soc., 2011, pp. 89-102 | DOI | MR | Zbl
An Introduction To Small Divisors problems, Istituti Editoriali e Poligrafici Internazionali, 2000
Linearization of germs: regular dependence on the multiplier, Bull. Soc. Math. France, Volume 136 (2008), pp. 533-564 | MR | Zbl | Numdam | DOI
An example of local analytic -difference equation: analytic classification, Ann. Fac. Sci. Toulouse Math., Volume 15 (2006), pp. 773-814 | Numdam | MR | Zbl | DOI
On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition, Adv. Math., Volume 216 (2007), pp. 1-28 | DOI | MR | Zbl
Dynamics in one complex variable, Friedr. Vieweg & Sohn, 1999, 257 pages | MR | Zbl
Quasianalytic monogenic solutions of a cohomological equation, Mem. Amer. Math. Soc., 164, 2003, 83 pages | DOI | MR | Zbl
A quasianalyticity property for monogenic solutions of small divisor problems, Bull. Braz. Math. Soc. (N.S.), Volume 42 (2011), pp. 45-74 | DOI | MR | Zbl
Solution complète au problème de Siegel de linéarisation d’une application holomorphe au voisinage d’un point fixe (d’après J.-C. Yoccoz), Séminaire Bourbaki, vol. 1991/1992, exposé no 753, Astérisque, Volume 206 (1992), pp. 273-310 | MR | Numdam | Zbl
Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Math., 49, Cambridge Univ. Press, Cambridge, 2011, 581 pages | DOI | MR | Zbl
Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque, Volume 231 (1995), pp. 3-88 | MR | Numdam
Cité par Sources :






