Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on 3
[Explosion d’une norme de Sobolev critique pour les solutions radiales non-dispersives de l’équation des ondes surcritique sur 3 ]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 3, pp. 503-573

We consider the wave equation in space dimension 3, with an energy-supercritical nonlinearity which can be either focusing or defocusing. For any radial solution of the equation, with positive maximal time of existence T, we prove that one of the following holds: (i) the norm of the solution in the critical Sobolev space goes to infinity as t goes to T, or (ii) T is infinite and the solution scatters to a linear solution forward in time. We use a variant of the channel of energy method, relying on a generalized Lp-energy which is almost conserved by the flow of the radial linear wave equation.

Considérons l’équation des ondes avec une non-linéarité surcritique pour l’énergie, focalisante ou défocalisante, en dimension 3 d’espace. On démontre que toute solution radiale de l’équation, avec un temps d’existence maximal T, vérifie une des deux propriétés suivantes  : (i) la norme de la solution dans l’espace de Sobolev critique tend vers l’infini quand t tend vers T  ; (ii) T est infini, et la solution est asymptotiquement proche d’une solution linéaire pour des temps infiniment grands. La démonstration utilise une variante de la méthode des canaux d’énergie basée sur une énergie généralisée (définie dans un espace Lp à poids) qui est presque conservée par le flot de l’équation des ondes linéaires.

Reçu le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2746
Classification : 35L05, 35L71, 35B40, 35B44
Keywords: Nonlinear wave equation, scattering, blow-up, asymptotic behavior.
Mots-clés : Équation des ondes non-linéaire, diffusion, explosion, comportement asymptotique.

Duyckaerts, Thomas 1 ; Roy, Tristan 2

1 LAGA, Université Paris 13 (UMR 7539), Université Sorbonne Paris Cité.
2 Nagoya University.
@article{BSMF_2017__145_3_503_0,
     author = {Duyckaerts, Thomas and Roy, Tristan},
     title = {Blow-up of the critical {Sobolev} norm for nonscattering radial solutions of supercritical wave equations on~$\protect \mathbb{R}^{3}$
            },
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {503--573},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {3},
     doi = {10.24033/bsmf.2746},
     mrnumber = {3766119},
     zbl = {1395.35042},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2746/}
}
TY  - JOUR
AU  - Duyckaerts, Thomas
AU  - Roy, Tristan
TI  - Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on $\protect \mathbb{R}^{3}$
            
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 503
EP  - 573
VL  - 145
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2746/
DO  - 10.24033/bsmf.2746
LA  - en
ID  - BSMF_2017__145_3_503_0
ER  - 
%0 Journal Article
%A Duyckaerts, Thomas
%A Roy, Tristan
%T Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on $\protect \mathbb{R}^{3}$
            
%J Bulletin de la Société Mathématique de France
%D 2017
%P 503-573
%V 145
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2746/
%R 10.24033/bsmf.2746
%G en
%F BSMF_2017__145_3_503_0
Duyckaerts, Thomas; Roy, Tristan. Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on $\protect \mathbb{R}^{3}$. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 3, pp. 503-573. doi: 10.24033/bsmf.2746

Bahouri, Hajer; Gérard, Patrick High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 http://muse.jhu.edu/... | MR | Zbl | DOI

Bulut, Aynur Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, J. Funct. Anal., Volume 263 (2012), pp. 1609-1660 | MR | Zbl | DOI

Collot, C. Type II blow-up manifolds for the energy supercritical wave equation (preprint arXiv:1407.4525, to appear in Mem. Amer. Math. Soc ) | MR

Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), Volume 13 (2011), pp. 533-599 | MR | Zbl | DOI

Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank Profiles of bounded radial solutions of the focusing, energy-critical wave equation, Geom. Funct. Anal., Volume 22 (2012), pp. 639-698 | MR | Zbl | DOI

Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., Volume 1 (2013), pp. 75-144 | MR | Zbl | DOI

Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank Scattering for radial, bounded solutions of focusing supercritical wave equations, Int. Math. Res. Not., Volume 2014 (2014), pp. 224-258 | MR | Zbl | DOI

Dodson, Benjamin; Lawrie, Andrew Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 1459-1529 | MR | Zbl | DOI

Donninger, Roland; Schörkhuber, Birgit Stable blow up dynamics for energy supercritical wave equations, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 2167-2189 | MR | Zbl | DOI

Donninger, Roland; Schörkhuber, Birgit On Blowup in Supercritical Wave Equations, Comm. Math. Phys., Volume 346 (2016), pp. 907-943 | MR | Zbl | DOI

Gallagher, Isabelle; Koch, Gabriel S.; Planchon, Fabrice A profile decomposition approach to the Lt(Lx3) Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527-1559 | MR | Zbl | DOI

Gallagher, Isabelle; Koch, Gabriel S.; Planchon, Fabrice Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., Volume 343 (2016), pp. 39-82 | MR | Zbl | DOI

Gulisashvili, A. B. Multipliers in Besov spaces, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 135 (1984), pp. 36-50 | MR | Zbl

Gulisashvili, A. B. Multipliers in Besov spaces and traces of functions on subspaces of Euclidean space, Dokl. Akad. Nauk SSSR, Volume 281 (1985), pp. 777-781 | MR | Zbl

Ginibre, J.; Velo, G. Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995), pp. 50-68 | MR | Zbl | DOI

Iskauriaza, L.; Serëgin, G. A.; Shverak, V. L3,-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, Volume 58 (2003), pp. 3-44 | MR | Zbl | DOI

Kenig, Carlos E.; Koch, Gabriel S. An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011), pp. 159-187 | MR | Zbl | Numdam | DOI

Kenig, Carlos E.; Merle, Frank Scattering for H˙1/2 bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 1937-1962 | MR | Zbl | DOI

Kenig, Carlos E.; Merle, Frank Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Amer. J. Math., Volume 133 (2011), pp. 1029-1065 | MR | Zbl | DOI

Kenig, Carlos E.; Merle, Frank Radial solutions to energy supercritical wave equations in odd dimensions, Discrete Contin. Dyn. Syst., Volume 31 (2011), pp. 1365-1381 | MR | Zbl | DOI

Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., Volume 46 (1993), pp. 527-620 | MR | Zbl | DOI

Killip, Rowan; Visan, Monica Energy-supercritical NLS: critical H˙s-bounds imply scattering, Comm. Partial Differential Equations, Volume 35 (2010), pp. 945-987 | MR | Zbl | DOI

Killip, Rowan; Visan, Monica The defocusing energy-supercritical nonlinear wave equation in three space dimensions, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 3893-3934 | MR | Zbl | DOI

Lindblad, Hans; Sogge, Christopher D. On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995), pp. 357-426 | MR | Zbl | DOI

Merle, Frank; Raphaël, Pierre Blow up of the critical norm for some radial L2 super critical nonlinear Schrödinger equations, Amer. J. Math., Volume 130 (2008), pp. 945-978 | MR | Zbl | DOI

Mazya, V. G.; Shaposhnikowa, T. O. Theory of multipliers in space of differentiable functions, Pitman, 1985 | MR

Roy, Tristan Global existence of smooth solutions of a 3D log-log energy-supercritical wave equation, Anal. PDE, Volume 2 (2009), pp. 261-280 | MR | Zbl | DOI

Roy, Tristan Scattering above energy norm of solutions of a loglog energy-supercritical Schrödinger equation with radial data, J. Differential Equations, Volume 250 (2011), pp. 292-319 | MR | Zbl | DOI

Runst, Thomas; Sickel, Winfried Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter & Co., Berlin, 1996, 547 pages | MR | Zbl | DOI

Seregin, G. A certain necessary condition of potential blow up for Navier-Stokes equations, Comm. Math. Phys., Volume 312 (2012), pp. 833-845 | MR | Zbl | DOI

Shen, Ruipeng On the energy subcritical, nonlinear wave equation in 3 with radial data, Anal. PDE, Volume 6 (2013), pp. 1929-1987 | MR | Zbl | DOI

Shih, Hsi-Wei Some results on scattering for log-subcritical and log-supercritical nonlinear wave equations, Anal. PDE, Volume 6 (2013), pp. 1-24 | MR | Zbl | DOI

Tao, Terence Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data, J. Hyperbolic Differ. Equ., Volume 4 (2007), pp. 259-265 | MR | Zbl | DOI

Cité par Sources :