[Explosion d’une norme de Sobolev critique pour les solutions radiales non-dispersives de l’équation des ondes surcritique sur ]
We consider the wave equation in space dimension , with an energy-supercritical nonlinearity which can be either focusing or defocusing. For any radial solution of the equation, with positive maximal time of existence , we prove that one of the following holds: (i) the norm of the solution in the critical Sobolev space goes to infinity as goes to , or (ii) is infinite and the solution scatters to a linear solution forward in time. We use a variant of the channel of energy method, relying on a generalized -energy which is almost conserved by the flow of the radial linear wave equation.
Considérons l’équation des ondes avec une non-linéarité surcritique pour l’énergie, focalisante ou défocalisante, en dimension d’espace. On démontre que toute solution radiale de l’équation, avec un temps d’existence maximal , vérifie une des deux propriétés suivantes : (i) la norme de la solution dans l’espace de Sobolev critique tend vers l’infini quand tend vers ; (ii) est infini, et la solution est asymptotiquement proche d’une solution linéaire pour des temps infiniment grands. La démonstration utilise une variante de la méthode des canaux d’énergie basée sur une énergie généralisée (définie dans un espace à poids) qui est presque conservée par le flot de l’équation des ondes linéaires.
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2746
Keywords: Nonlinear wave equation, scattering, blow-up, asymptotic behavior.
Mots-clés : Équation des ondes non-linéaire, diffusion, explosion, comportement asymptotique.
Duyckaerts, Thomas 1 ; Roy, Tristan 2
@article{BSMF_2017__145_3_503_0,
author = {Duyckaerts, Thomas and Roy, Tristan},
title = {Blow-up of the critical {Sobolev} norm for nonscattering radial solutions of supercritical wave equations on~$\protect \mathbb{R}^{3}$
},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {503--573},
year = {2017},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {145},
number = {3},
doi = {10.24033/bsmf.2746},
mrnumber = {3766119},
zbl = {1395.35042},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2746/}
}
TY - JOUR
AU - Duyckaerts, Thomas
AU - Roy, Tristan
TI - Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on $\protect \mathbb{R}^{3}$
JO - Bulletin de la Société Mathématique de France
PY - 2017
SP - 503
EP - 573
VL - 145
IS - 3
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2746/
DO - 10.24033/bsmf.2746
LA - en
ID - BSMF_2017__145_3_503_0
ER -
%0 Journal Article
%A Duyckaerts, Thomas
%A Roy, Tristan
%T Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on $\protect \mathbb{R}^{3}$
%J Bulletin de la Société Mathématique de France
%D 2017
%P 503-573
%V 145
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2746/
%R 10.24033/bsmf.2746
%G en
%F BSMF_2017__145_3_503_0
Duyckaerts, Thomas; Roy, Tristan. Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on $\protect \mathbb{R}^{3}$. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 3, pp. 503-573. doi: 10.24033/bsmf.2746
High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 http://muse.jhu.edu/... | MR | Zbl | DOI
Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, J. Funct. Anal., Volume 263 (2012), pp. 1609-1660 | MR | Zbl | DOI
Type II blow-up manifolds for the energy supercritical wave equation (preprint arXiv:1407.4525, to appear in Mem. Amer. Math. Soc ) | MR
Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), Volume 13 (2011), pp. 533-599 | MR | Zbl | DOI
Profiles of bounded radial solutions of the focusing, energy-critical wave equation, Geom. Funct. Anal., Volume 22 (2012), pp. 639-698 | MR | Zbl | DOI
Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., Volume 1 (2013), pp. 75-144 | MR | Zbl | DOI
Scattering for radial, bounded solutions of focusing supercritical wave equations, Int. Math. Res. Not., Volume 2014 (2014), pp. 224-258 | MR | Zbl | DOI
Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 1459-1529 | MR | Zbl | DOI
Stable blow up dynamics for energy supercritical wave equations, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 2167-2189 | MR | Zbl | DOI
On Blowup in Supercritical Wave Equations, Comm. Math. Phys., Volume 346 (2016), pp. 907-943 | MR | Zbl | DOI
A profile decomposition approach to the Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527-1559 | MR | Zbl | DOI
Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., Volume 343 (2016), pp. 39-82 | MR | Zbl | DOI
Multipliers in Besov spaces, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 135 (1984), pp. 36-50 | MR | Zbl
Multipliers in Besov spaces and traces of functions on subspaces of Euclidean space, Dokl. Akad. Nauk SSSR, Volume 281 (1985), pp. 777-781 | MR | Zbl
Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995), pp. 50-68 | MR | Zbl | DOI
-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, Volume 58 (2003), pp. 3-44 | MR | Zbl | DOI
An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011), pp. 159-187 | MR | Zbl | Numdam | DOI
Scattering for bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 1937-1962 | MR | Zbl | DOI
Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Amer. J. Math., Volume 133 (2011), pp. 1029-1065 | MR | Zbl | DOI
Radial solutions to energy supercritical wave equations in odd dimensions, Discrete Contin. Dyn. Syst., Volume 31 (2011), pp. 1365-1381 | MR | Zbl | DOI
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., Volume 46 (1993), pp. 527-620 | MR | Zbl | DOI
Energy-supercritical NLS: critical -bounds imply scattering, Comm. Partial Differential Equations, Volume 35 (2010), pp. 945-987 | MR | Zbl | DOI
The defocusing energy-supercritical nonlinear wave equation in three space dimensions, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 3893-3934 | MR | Zbl | DOI
On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995), pp. 357-426 | MR | Zbl | DOI
Blow up of the critical norm for some radial super critical nonlinear Schrödinger equations, Amer. J. Math., Volume 130 (2008), pp. 945-978 | MR | Zbl | DOI
Theory of multipliers in space of differentiable functions, Pitman, 1985 | MR
Global existence of smooth solutions of a 3D log-log energy-supercritical wave equation, Anal. PDE, Volume 2 (2009), pp. 261-280 | MR | Zbl | DOI
Scattering above energy norm of solutions of a loglog energy-supercritical Schrödinger equation with radial data, J. Differential Equations, Volume 250 (2011), pp. 292-319 | MR | Zbl | DOI
Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter & Co., Berlin, 1996, 547 pages | MR | Zbl | DOI
A certain necessary condition of potential blow up for Navier-Stokes equations, Comm. Math. Phys., Volume 312 (2012), pp. 833-845 | MR | Zbl | DOI
On the energy subcritical, nonlinear wave equation in with radial data, Anal. PDE, Volume 6 (2013), pp. 1929-1987 | MR | Zbl | DOI
Some results on scattering for log-subcritical and log-supercritical nonlinear wave equations, Anal. PDE, Volume 6 (2013), pp. 1-24 | MR | Zbl | DOI
Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data, J. Hyperbolic Differ. Equ., Volume 4 (2007), pp. 259-265 | MR | Zbl | DOI
Cité par Sources :






