Nous montrons que certains opérateurs affines en la courbure de Ricci sont localement inversibles, dans des espaces de Sobolev à poids, au voisinage de la métrique euclidienne.
We show that some operators, affine relatively to the Ricci curvature, are locally invertible, in some weithted sobolev spaces, near the euclidiean metric.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2742
Mots-clés : Courbure de Ricci, 2-tenseurs symétriques, EDP elliptique quasi-linéaire, espaces de Sobolev à poids.
Keywords: Ricci curvature, symmetric 2-tensors, quasi-linear elliptic PDE, weighted sobolev spaces.
Delay, Erwann 1
@article{BSMF_2017__145_3_411_0,
author = {Delay, Erwann},
title = {Inversion d{\textquoteright}op\'erateurs de courbures au voisinage de la m\'etrique euclidienne},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {411--420},
year = {2017},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {145},
number = {3},
doi = {10.24033/bsmf.2742},
zbl = {1386.53039},
mrnumber = {3766115},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2742/}
}
TY - JOUR AU - Delay, Erwann TI - Inversion d’opérateurs de courbures au voisinage de la métrique euclidienne JO - Bulletin de la Société Mathématique de France PY - 2017 SP - 411 EP - 420 VL - 145 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2742/ DO - 10.24033/bsmf.2742 LA - fr ID - BSMF_2017__145_3_411_0 ER -
%0 Journal Article %A Delay, Erwann %T Inversion d’opérateurs de courbures au voisinage de la métrique euclidienne %J Bulletin de la Société Mathématique de France %D 2017 %P 411-420 %V 145 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2742/ %R 10.24033/bsmf.2742 %G fr %F BSMF_2017__145_3_411_0
Delay, Erwann. Inversion d’opérateurs de courbures au voisinage de la métrique euclidienne. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 3, pp. 411-420. doi: 10.24033/bsmf.2742
Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 2 (1975), pp. 151-218 | Numdam | MR | Zbl
Nonexistence of Riemannian metrics with prescribed Ricci tensor, Nonlinear problems in geometry (Mobile, Ala., 1985) (Contemp. Math.), Volume 51, Amer. Math. Soc., Providence, RI, 1986, pp. 1-8 | MR | Zbl | DOI
Einstein manifolds, Ergebn. Math. Grenzg., 10, Springer, Berlin, 1987, 510 pages | MR | Zbl | DOI
Studies of some curvature operators in a neighborhood of an asymptotically hyperbolic Einstein manifold, Adv. Math., Volume 168 (2002), pp. 213-224 | MR | Zbl | DOI
Local solvability of elliptic, and curvature, equations on compact manifolds, J. reine angew. Math., Volume 558 (2003), pp. 23-45 | MR | Zbl | DOI
Obstruction to prescribed positive Ricci curvature, Pacific J. Math., Volume 148 (1991), pp. 11-15 http://projecteuclid.org/euclid.pjm/1102644779 | MR | Zbl | DOI
Étude locale d’opérateurs de courbure sur l’espace hyperbolique, J. Math. Pures Appl., Volume 78 (1999), pp. 389-430 | MR | Zbl | DOI
Existence of metrics with prescribed Ricci curvature : local theory, Invent. math., Volume 65 (1981/82), pp. 179-207 | MR | Zbl | DOI
Metrics with prescribed Ricci curvature, Seminar on Differential Geometry (Ann. of Math. Stud.), Volume 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 525-537 | MR | Zbl
Prescribing positive Ricci curvature on compact manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Volume 43 (1985), pp. 357-369 | MR | Zbl
Metrics with prescribed Ricci curvature of constant rank. I. The integrable case, Adv. Math., Volume 145 (1999), pp. 1-97 | MR | Zbl | DOI
Ricci curvature in the neighborhood of rank-one symmetric spaces, J. Geom. Anal., Volume 11 (2001), pp. 573-588 | MR | Zbl | DOI
Uniqueness and nonexistence of metrics with prescribed Ricci curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984), pp. 351-359 | Numdam | MR | Zbl | DOI
The Ricci curvature equation, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) (Math. Sci. Res. Inst. Publ.), Volume 2, Springer, New York, 1984, pp. 47-72 | MR | Zbl | DOI
Solutions globales de l’équation de Ricci sur dans les espaces de Sobolev à poids, C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 361-364 | MR | Zbl
Graduate Analysis Elliptic regularity and Scattering (Lecture 18.156, Massachusetts Institute of Technology, Spring 2008, http://math.mit.edu/~rbm/18.156-S08/Lecture-Notes.pdf )
Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (Lecture Notes in Pure and Appl. Math.), Volume 161, Dekker, New York, 1994, pp. 85-130 | MR | Zbl
Spectral invariance, ellipticity, and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces, Ann. Global Anal. Geom., Volume 10 (1992), pp. 237-254 | MR | Zbl | DOI
Cité par Sources :






