Monodromies at infinity of non-tame polynomials
[Monodromies à l'infini des polynômes non-modérés]
Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 3, pp. 477-506

Polynomials that we usually encounter in mathematics are non-convenient and hence non-tame at infinity. We consider the monodromy at infinity and the monodromies around the bifurcation points of polynomial functions f:n which are non-tame at infinity and might have non-isolated singularities. Our description of their Jordan blocks in terms of the Newton polyhedra and the motivic Milnor fibers relies on two new issues: the non-atypical eigenvalues of the monodromies and the corresponding concentration results for their generalized eigenspaces.

Les polynômes qu'on rencontre d'habitude en mathématiques sont généralement non-commodes et donc non-modérés à l'infini. On considère ici la monodromie à l'infini et les monodromies autour les valeurs de bifurcation des fonctions polynômiales f:n qui sont non-modérés à l'infini et peuvent avoir des singularités non-isolées. Notre description de leurs blocs de Jordan en termes des polyèdres de Newton et des fibres de Milnor motiviques s'appuie sur deux nouveaux concepts : les valeurs propres non-atypiques des monodromies et les résultats de concentration pour leurs espaces propres généralisés.

Publié le :
DOI : 10.24033/bsmf.2720
Classification : 14E18, 14M25, 32C38, 32S35, 32S40
Keywords: Atypical values, non-convenient polynomials, monodromy at infinity, Jordan blocks, motivic Milnor fibre, Newton polyhedron, toric compactification.
Mots-clés : Valeurs atypiques, polynômes non-commodes, monodromie à l'infini, blocs de Jordan, fibre de Milnor motivique, polyèdre de Newton, compactification torique.
@article{BSMF_2016__144_3_477_0,
     author = {Takeuchi, Kiyoshi and Tib\u{a}r, Mihai},
     title = {Monodromies at infinity of non-tame polynomials},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {477--506},
     year = {2016},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {144},
     number = {3},
     doi = {10.24033/bsmf.2720},
     mrnumber = {3558430},
     zbl = {1388.14052},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2720/}
}
TY  - JOUR
AU  - Takeuchi, Kiyoshi
AU  - Tibăr, Mihai
TI  - Monodromies at infinity of non-tame polynomials
JO  - Bulletin de la Société Mathématique de France
PY  - 2016
SP  - 477
EP  - 506
VL  - 144
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2720/
DO  - 10.24033/bsmf.2720
LA  - en
ID  - BSMF_2016__144_3_477_0
ER  - 
%0 Journal Article
%A Takeuchi, Kiyoshi
%A Tibăr, Mihai
%T Monodromies at infinity of non-tame polynomials
%J Bulletin de la Société Mathématique de France
%D 2016
%P 477-506
%V 144
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2720/
%R 10.24033/bsmf.2720
%G en
%F BSMF_2016__144_3_477_0
Takeuchi, Kiyoshi; Tibăr, Mihai. Monodromies at infinity of non-tame polynomials. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 3, pp. 477-506. doi: 10.24033/bsmf.2720

Broughton, S. A. Milnor numbers and the topology of polynomial hypersurfaces, Invent. math., Volume 92 (1988), pp. 217-241 (ISSN: 0020-9910) | MR | Zbl | DOI

Denef, Jan; Loeser, François Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998), pp. 505-537 (ISSN: 1056-3911) | MR | Zbl

Denef, Jan; Loeser, François, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, 2001, pp. 327-348 | MR | Zbl

Dimca, Alexandru Monodromy at infinity for polynomials in two variables, J. Algebraic Geom., Volume 7 (1998), pp. 771-779 (ISSN: 1056-3911) | MR | Zbl

Dimca, Alexandru Sheaves in topology, Universitext, Springer, Berlin, 2004, 236 pages (ISBN: 3-540-20665-5) | MR | Zbl | DOI

Esterov, Alexander; Takeuchi, Kiyoshi Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not., Volume 2012 (2012), pp. 3567-3613 (ISSN: 1073-7928) | MR | Zbl | DOI

Fulton, William Introduction to toric varieties, Annals of Math. Studies, 131, Princeton Univ. Press, Princeton, NJ, 1993, 157 pages (ISBN: 0-691-00049-2) | MR | Zbl | DOI

Guibert, Gil; Loeser, François; Merle, Michel Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006), pp. 409-457 (ISSN: 0012-7094) | MR | Zbl | DOI

Hotta, Ryoshi; Takeuchi, Kiyoshi; Tanisaki, Toshiyuki D -modules, perverse sheaves, and representation theory, Progress in Math., 236, Birkhäuser, 2008, 407 pages (ISBN: 978-0-8176-4363-8) | MR | Zbl | DOI

Kashiwara, Masaki; Schapira, Pierre Sheaves on manifolds, Grundl. math. Wiss., 292, Springer, Berlin, 1990, 512 pages (ISBN: 3-540-51861-4) | MR | Zbl | DOI

Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor, Invent. math., Volume 32 (1976), pp. 1-31 (ISSN: 0020-9910) | MR | Zbl | DOI

Libgober, A.; Sperber, S. On the zeta function of monodromy of a polynomial map, Compositio Math., Volume 95 (1995), pp. 287-307 (ISSN: 0010-437X) | Numdam | MR | Zbl

Matsui, Yutaka; Takeuchi, Kiyoshi Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., Volume 268 (2011), pp. 409-439 (ISSN: 0025-5874) | MR | Zbl | DOI

Matsui, Yutaka; Takeuchi, Kiyoshi Monodromy at infinity of polynomial maps and Newton polyhedra (with an appendix by C. Sabbah), Int. Math. Res. Not., Volume 2013 (2013), pp. 1691-1746 (ISSN: 1073-7928) | MR | Zbl

Matsui, Yutaka; Takeuchi, Kiyoshi Motivic Milnor fibers and Jordan normal forms of Milnor monodromies, Publ. Res. Inst. Math. Sci., Volume 50 (2014), pp. 207-226 (ISSN: 0034-5318) | MR | Zbl | DOI

Matsui, Yutaka; Takeuchi, Kiyoshi On the sizes of the Jordan blocks of monodromies at infinity, Hokkaido Math. J., Volume 44 (2015), pp. 313-326 (ISSN: 0385-4035) | MR | Zbl | DOI

Némethi, András; Sabbah, Claude Semicontinuity of the spectrum at infinity, Abh. Math. Sem. Univ. Hamburg, Volume 69 (1999), pp. 25-35 (ISSN: 0025-5858) | MR | Zbl | DOI

Némethi, András; Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Volume 26 (1990), pp. 681-689 (ISSN: 0034-5318) | MR | Zbl | DOI

Oda, Tadao Convex bodies and algebraic geometry, Ergebn. Math. Grenzg., 15, Springer, Berlin, 1988, 212 pages (ISBN: 3-540-17600-4) | MR | Zbl

Oka, Mutsuo Non-degenerate complete intersection singularity, Actualités Mathématiques, Hermann, Paris, 1997, 309 pages (ISBN: 2-7056-6343-6) | MR | Zbl

Raibaut, Michel Fibre de Milnor motivique à l'infini, C. R. Math. Acad. Sci. Paris, Volume 348 (2010), pp. 419-422 (ISSN: 1631-073X) | MR | Zbl | DOI

Raibaut, Michel Singularités à l'infini et intégration motivique, Bull. Soc. Math. France, Volume 140 (2012), pp. 51-100 (ISSN: 0037-9484) | MR | Zbl | Numdam | DOI

Sabbah, Claude Monodromy at infinity and Fourier transform, Publ. Res. Inst. Math. Sci., Volume 33 (1997), pp. 643-685 (ISSN: 0034-5318) | MR | Zbl | DOI

Sabbah, Claude Hypergeometric periods for a tame polynomial, Port. Math., Volume 63 (2006), pp. 173-226 (ISSN: 0032-5155) | MR | Zbl

Siersma, Dirk; Tibăr, Mihai Singularities at infinity and their vanishing cycles, Duke Math. J., Volume 80 (1995), pp. 771-783 (ISSN: 0012-7094) | MR | Zbl | DOI

Siersma, Dirk; Tibăr, Mihai Singularities at infinity and their vanishing cycles. II. Monodromy, Publ. Res. Inst. Math. Sci., Volume 36 (2000), pp. 659-679 (ISSN: 0034-5318) | MR | Zbl | DOI

Siersma, Dirk; Tibăr, Mihai Deformations of polynomials, boundary singularities and monodromy, Mosc. Math. J., Volume 3 (2003), pp. 661-679 (ISSN: 1609-3321) | MR | Zbl | DOI

Tibăr, Mihai Topology at infinity of polynomial mappings and Thom regularity condition, Compositio Math., Volume 111 (1998), pp. 89-109 (ISSN: 0010-437X) | MR | Zbl | DOI

Tibăr, Mihai Polynomials and vanishing cycles, Cambridge Tracts in Mathematics, 170, Cambridge Univ. Press, Cambridge, 2007, 253 pages (ISBN: 978-0-521-82920-5; 0-521-82920-8) | MR | Zbl | DOI

Varchenko, A. N. Zeta-function of monodromy and Newton's diagram, Invent. math., Volume 37 (1976), pp. 253-262 (ISSN: 0020-9910) | MR | Zbl | DOI

Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary. II, Kodai Math. J., Volume 19 (1996), pp. 218-233 (ISSN: 0386-5991) | MR | Zbl | DOI

Cité par Sources :