[Ondes aquatiques de dimension 2 en coordonnées holomorphes II : solutions globales]
This article is concerned with the infinite depth water wave equation in two space dimensions. We consider this problem expressed in position-velocity potential holomorphic coordinates, and prove that small localized data leads to global solutions. This article is a continuation of authors' earlier paper [8].
DOI : 10.24033/bsmf.2717
Keywords: Gravity waves, normal form, wave packets, modified energy method.
@article{BSMF_2016__144_2_369_0,
author = {Ifrim, Mihaela and Tataru, Daniel},
title = {Two dimensional water waves in holomorphic coordinates {II:} global solutions},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {369--394},
year = {2016},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {144},
number = {2},
doi = {10.24033/bsmf.2717},
mrnumber = {3499085},
zbl = {1360.35179},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2717/}
}
TY - JOUR AU - Ifrim, Mihaela AU - Tataru, Daniel TI - Two dimensional water waves in holomorphic coordinates II: global solutions JO - Bulletin de la Société Mathématique de France PY - 2016 SP - 369 EP - 394 VL - 144 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2717/ DO - 10.24033/bsmf.2717 LA - en ID - BSMF_2016__144_2_369_0 ER -
%0 Journal Article %A Ifrim, Mihaela %A Tataru, Daniel %T Two dimensional water waves in holomorphic coordinates II: global solutions %J Bulletin de la Société Mathématique de France %D 2016 %P 369-394 %V 144 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2717/ %R 10.24033/bsmf.2717 %G en %F BSMF_2016__144_2_369_0
Ifrim, Mihaela; Tataru, Daniel. Two dimensional water waves in holomorphic coordinates II: global solutions. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 2, pp. 369-394. doi: 10.24033/bsmf.2717
On the water-wave equations with surface tension, Duke Math. J., Volume 158 (2011), pp. 413-499 (ISSN: 0012-7094) | MR | Zbl | DOI
On the Cauchy problem for gravity water waves (preprint arXiv:1212.0626 ) | MR | Zbl
Global solutions and asymptotic behavior for two dimensional gravity water waves (preprint arXiv:1305.4090 ) | MR | Numdam
Large time existence for 3D water-waves and asymptotics, Invent. math., Volume 171 (2008), pp. 485-541 (ISSN: 0020-9910) | MR | Zbl | DOI
Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations, Volume 35 (2010), pp. 2195-2252 (ISSN: 0360-5302) | MR | Zbl | DOI
On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Volume 53 (2000), pp. 1536-1602 (ISSN: 0010-3640) | MR | Zbl | DOI
Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 (2007), pp. 829-930 (ISSN: 0894-0347) | MR | Zbl | DOI
Two dimensional water waves in holomorphic coordinates (preprint arXiv:1401.1252 ) | MR
Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 3407-3412 | MR | Zbl | DOI
Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, Volume 28 (2015), pp. 2661-2675 (ISSN: 0951-7715) | MR | Zbl | DOI
Global solutions for the gravity water waves system in 2D, Invent. math., Volume 199 (2015), pp. 653-804 (ISSN: 0020-9910) | MR | Zbl | DOI
Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654 (ISSN: 0894-0347) | MR | Zbl | DOI
Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math., Volume 162 (2005), pp. 109-194 (ISSN: 0003-486X) | MR | Zbl | DOI
The Cauchy-Poisson problem, Dinamika Splošn. Sredy, Volume 18 (1974), p. 104-210, 254 | MR
Free boundary problem for an incompressible ideal fluid with surface tension, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1725-1740 (ISSN: 0218-2025) | MR | Zbl | DOI
Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., Volume 61 (2008), pp. 698-744 (ISSN: 0010-3640) | MR | Zbl | DOI
Well-posedness in Sobolev spaces of the full water wave problem in 2D, Invent. math., Volume 130 (1997), pp. 39-72 (ISSN: 0020-9910) | MR | Zbl | DOI
Well-posedness in Sobolev spaces of the full water wave problem in 3D, J. Amer. Math. Soc., Volume 12 (1999), pp. 445-495 (ISSN: 0894-0347) | MR | Zbl | DOI
Almost global wellposedness of the 2D full water wave problem, Invent. math., Volume 177 (2009), pp. 45-135 (ISSN: 0020-9910) | MR | Zbl | DOI
Global wellposedness of the 3D full water wave problem, Invent. math., Volume 184 (2011), pp. 125-220 (ISSN: 0020-9910) | MR | Zbl | DOI
Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982), pp. 49-96 (ISSN: 0034-5318) | MR | Zbl | DOI
On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., Volume 61 (2008), pp. 877-940 (ISSN: 0010-3640) | MR | Zbl | DOI
Cité par Sources :






