Two dimensional water waves in holomorphic coordinates II: global solutions
[Ondes aquatiques de dimension 2 en coordonnées holomorphes II : solutions globales]
Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 2, pp. 369-394

This article is concerned with the infinite depth water wave equation in two space dimensions. We consider this problem expressed in position-velocity potential holomorphic coordinates, and prove that small localized data leads to global solutions. This article is a continuation of authors' earlier paper [8].

Publié le :
DOI : 10.24033/bsmf.2717
Classification : 35Q35, 76B15
Keywords: Gravity waves, normal form, wave packets, modified energy method.
@article{BSMF_2016__144_2_369_0,
     author = {Ifrim, Mihaela and Tataru, Daniel},
     title = {Two dimensional water waves in holomorphic coordinates {II:} global solutions},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {369--394},
     year = {2016},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {144},
     number = {2},
     doi = {10.24033/bsmf.2717},
     mrnumber = {3499085},
     zbl = {1360.35179},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2717/}
}
TY  - JOUR
AU  - Ifrim, Mihaela
AU  - Tataru, Daniel
TI  - Two dimensional water waves in holomorphic coordinates II: global solutions
JO  - Bulletin de la Société Mathématique de France
PY  - 2016
SP  - 369
EP  - 394
VL  - 144
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2717/
DO  - 10.24033/bsmf.2717
LA  - en
ID  - BSMF_2016__144_2_369_0
ER  - 
%0 Journal Article
%A Ifrim, Mihaela
%A Tataru, Daniel
%T Two dimensional water waves in holomorphic coordinates II: global solutions
%J Bulletin de la Société Mathématique de France
%D 2016
%P 369-394
%V 144
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2717/
%R 10.24033/bsmf.2717
%G en
%F BSMF_2016__144_2_369_0
Ifrim, Mihaela; Tataru, Daniel. Two dimensional water waves in holomorphic coordinates II: global solutions. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 2, pp. 369-394. doi: 10.24033/bsmf.2717

Alazard, T.; Burq, N.; Zuily, C. On the water-wave equations with surface tension, Duke Math. J., Volume 158 (2011), pp. 413-499 (ISSN: 0012-7094) | MR | Zbl | DOI

Alazard, T.; Burq, N.; Zuily, C. On the Cauchy problem for gravity water waves (preprint arXiv:1212.0626 ) | MR | Zbl

Alazard, T.; Delort, J.-M. Global solutions and asymptotic behavior for two dimensional gravity water waves (preprint arXiv:1305.4090 ) | MR | Numdam

Alvarez-Samaniego, Borys; Lannes, David Large time existence for 3D water-waves and asymptotics, Invent. math., Volume 171 (2008), pp. 485-541 (ISSN: 0020-9910) | MR | Zbl | DOI

Christianson, Hans; Hur, Vera Mikyoung; Staffilani, Gigliola Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations, Volume 35 (2010), pp. 2195-2252 (ISSN: 0360-5302) | MR | Zbl | DOI

Christodoulou, Demetrios; Lindblad, Hans On the motion of the free surface of a liquid, Comm. Pure Appl. Math., Volume 53 (2000), pp. 1536-1602 (ISSN: 0010-3640) | MR | Zbl | DOI

Coutand, Daniel; Shkoller, Steve Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 (2007), pp. 829-930 (ISSN: 0894-0347) | MR | Zbl | DOI

Hunter, John K.; Ifrim, Mihaela; Tataru, Daniel Two dimensional water waves in holomorphic coordinates (preprint arXiv:1401.1252 ) | MR

Hunter, John K.; Ifrim, Mihaela; Tataru, Daniel; Wong, Tak Kwong Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 3407-3412 | MR | Zbl | DOI

Ifrim, Mihaela; Tataru, Daniel Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, Volume 28 (2015), pp. 2661-2675 (ISSN: 0951-7715) | MR | Zbl | DOI

Ionescu, Alexandru D.; Pusateri, Fabio Global solutions for the gravity water waves system in 2D, Invent. math., Volume 199 (2015), pp. 653-804 (ISSN: 0020-9910) | MR | Zbl | DOI

Lannes, David Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654 (ISSN: 0894-0347) | MR | Zbl | DOI

Lindblad, Hans Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math., Volume 162 (2005), pp. 109-194 (ISSN: 0003-486X) | MR | Zbl | DOI

Nalimov, V. I. The Cauchy-Poisson problem, Dinamika Splošn. Sredy, Volume 18 (1974), p. 104-210, 254 | MR

Ogawa, Masao; Tani, Atusi Free boundary problem for an incompressible ideal fluid with surface tension, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 1725-1740 (ISSN: 0218-2025) | MR | Zbl | DOI

Shatah, Jalal; Zeng, Chongchun Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., Volume 61 (2008), pp. 698-744 (ISSN: 0010-3640) | MR | Zbl | DOI

Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 2D, Invent. math., Volume 130 (1997), pp. 39-72 (ISSN: 0020-9910) | MR | Zbl | DOI

Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 3D, J. Amer. Math. Soc., Volume 12 (1999), pp. 445-495 (ISSN: 0894-0347) | MR | Zbl | DOI

Wu, Sijue Almost global wellposedness of the 2D full water wave problem, Invent. math., Volume 177 (2009), pp. 45-135 (ISSN: 0020-9910) | MR | Zbl | DOI

Wu, Sijue Global wellposedness of the 3D full water wave problem, Invent. math., Volume 184 (2011), pp. 125-220 (ISSN: 0020-9910) | MR | Zbl | DOI

Yosihara, Hideaki Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982), pp. 49-96 (ISSN: 0034-5318) | MR | Zbl | DOI

Zhang, Ping; Zhang, Zhifei On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., Volume 61 (2008), pp. 877-940 (ISSN: 0010-3640) | MR | Zbl | DOI

Cité par Sources :