Rigidity of reducibility of Gevrey quasi-periodic cocycles on U(n)
[Rigidité de réductibilité des cocycles quasi-périodiques de Gevrey sur U(n)]
Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 1, pp. 1-52

We consider the reducibility problem of cocycles (α,A) on 𝕋d×U(n) in Gevrey classes, where α is a Diophantine vector. We prove that, if a Gevrey cocycle is conjugated to a constant cocycle (α,C) by a suitable measurable conjugacy (0,B), then for almost all C it can be conjugated to (α,C) in the same Gevrey class, provided that A is sufficiently close to a constant. If B is continuous we obtain that it is Gevrey smooth. We consider as well the global problem of reducibility in Gevrey classes when d=1.

On considère le problème de la réductibilité de cocycles (α,A) sur 𝕋d×U(n) dans les classes de Gevrey, où α est Diophantien. Si A est proche d'une constante et le Gevrey cocycle (α,A) est conjuqué au cocycle constant (α,C) par une conjugaison mesurable (0,B), on montre que pour presque tous C le cocycle peut êtrte conjuguer à (α,C) dans la même classe de Gevrey . Si B est continue on obtient qu'elle est Gevrey. On considère aussi le problème de la réductibilité globale dans les classes de Gevrey dans le cas où d=1.

Publié le :
DOI : 10.24033/bsmf.2705
Keywords: reducibility of quasi-periodic cocycles, Gevrey classes
@article{BSMF_2016__144_1_1_0,
     author = {Hou, Xuanji and Popov, Georgi},
     title = {Rigidity of reducibility of {Gevrey} quasi-periodic cocycles on~$U(n)$},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {1--52},
     year = {2016},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {144},
     number = {1},
     doi = {10.24033/bsmf.2705},
     mrnumber = {3481260},
     zbl = {1375.37009},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2705/}
}
TY  - JOUR
AU  - Hou, Xuanji
AU  - Popov, Georgi
TI  - Rigidity of reducibility of Gevrey quasi-periodic cocycles on $U(n)$
JO  - Bulletin de la Société Mathématique de France
PY  - 2016
SP  - 1
EP  - 52
VL  - 144
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2705/
DO  - 10.24033/bsmf.2705
LA  - en
ID  - BSMF_2016__144_1_1_0
ER  - 
%0 Journal Article
%A Hou, Xuanji
%A Popov, Georgi
%T Rigidity of reducibility of Gevrey quasi-periodic cocycles on $U(n)$
%J Bulletin de la Société Mathématique de France
%D 2016
%P 1-52
%V 144
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2705/
%R 10.24033/bsmf.2705
%G en
%F BSMF_2016__144_1_1_0
Hou, Xuanji; Popov, Georgi. Rigidity of reducibility of Gevrey quasi-periodic cocycles on $U(n)$. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 1, pp. 1-52. doi: 10.24033/bsmf.2705

Avila, Artur; Krikorian, Raphaël Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math., Volume 164 (2006), pp. 911-940 (ISSN: 0003-486X) | MR | Zbl | DOI

Chavaudret, Claire Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles, Bull. Soc. Math. France, Volume 141 (2013), pp. 47-106 (ISSN: 0037-9484) | MR | Zbl | DOI

Eliasson, L. H. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys., Volume 146 (1992), pp. 447-482 http://projecteuclid.org/euclid.cmp/1104250354 (ISSN: 0010-3616) | MR | Zbl | DOI

Eliasson, L. H., Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., Providence, RI, 2001, pp. 679-705 | MR | Zbl | DOI

Her, Hai-Long; You, Jiangong Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations, Volume 20 (2008), pp. 831-866 (ISSN: 1040-7294) | MR | Zbl | DOI

Hou, Xuanji; You, Jiangong The rigidity of reducibility of cocycles on SO (N,), Nonlinearity, Volume 21 (2008), pp. 2317-2330 (ISSN: 0951-7715) | MR | Zbl | DOI

Hou, Xuanji; You, Jiangong Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n), Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 441-454 (ISSN: 1078-0947) | MR | Zbl | DOI

Hou, Xuanji; You, Jiangong Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., Volume 190 (2012), pp. 209-260 (ISSN: 0020-9910) | MR | Zbl | DOI

Krikorian, Raphaël Réductibilité des systèmes produits-croisés à valeurs das des groupes compacts, Astérisque, Volume 259 (1999) | MR | Zbl | Numdam

Krikorian, Raphaël Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans des groupes compacts, Ann. Sci. École Norm. Sup., Volume 32 (1999), pp. 187-240 (ISSN: 0012-9593) | MR | Zbl | Numdam | DOI

Krikorian, Raphaël Global density of reducible quasi-periodic cocycles on 𝐓1× SU (2), Ann. of Math., Volume 154 (2001), pp. 269-326 (ISSN: 0003-486X) | MR | Zbl | DOI

Krikorian, Raphaël Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on 𝕋 × S L ( 2 , ) (preprint arXiv:math/0402333 )

Lions, J.-L.; Magenes, E. Problèmes aux limites non homogènes et applications. Vol. 3, Travaux et Recherches Mathématiques, 20, Dunod, 1970, 328 pages | MR | Zbl

Marco, Jean-Pierre; Sauzin, David Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. IHÉS, Volume 96 (2002), p. 199-275 (2003) (ISSN: 0073-8301) | MR | Zbl | Numdam | DOI

Mitev, Todor; Popov, Georgi Gevrey normal form and effective stability of Lagrangian tori, Discrete Contin. Dyn. Syst. Ser. S, Volume 3 (2010), pp. 643-666 (ISSN: 1937-1632) | MR | Zbl | DOI

Popov, Georgi Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré, Volume 1 (2000), pp. 223-248 (ISSN: 1424-0637) | MR | Zbl | DOI

Popov, Georgi KAM theorem for Gevrey Hamiltonians, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 1753-1786 (ISSN: 0143-3857) | MR | Zbl | DOI

Cité par Sources :