[Rigidité de réductibilité des cocycles quasi-périodiques de Gevrey sur ]
We consider the reducibility problem of cocycles on in Gevrey classes, where is a Diophantine vector. We prove that, if a Gevrey cocycle is conjugated to a constant cocycle by a suitable measurable conjugacy , then for almost all it can be conjugated to in the same Gevrey class, provided that is sufficiently close to a constant. If is continuous we obtain that it is Gevrey smooth. We consider as well the global problem of reducibility in Gevrey classes when .
On considère le problème de la réductibilité de cocycles sur dans les classes de Gevrey, où est Diophantien. Si est proche d'une constante et le Gevrey cocycle est conjuqué au cocycle constant par une conjugaison mesurable , on montre que pour presque tous le cocycle peut êtrte conjuguer à dans la même classe de Gevrey . Si est continue on obtient qu'elle est Gevrey. On considère aussi le problème de la réductibilité globale dans les classes de Gevrey dans le cas où .
DOI : 10.24033/bsmf.2705
@article{BSMF_2016__144_1_1_0,
author = {Hou, Xuanji and Popov, Georgi},
title = {Rigidity of reducibility of {Gevrey} quasi-periodic cocycles on~$U(n)$},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {1--52},
year = {2016},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {144},
number = {1},
doi = {10.24033/bsmf.2705},
mrnumber = {3481260},
zbl = {1375.37009},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2705/}
}
TY - JOUR AU - Hou, Xuanji AU - Popov, Georgi TI - Rigidity of reducibility of Gevrey quasi-periodic cocycles on $U(n)$ JO - Bulletin de la Société Mathématique de France PY - 2016 SP - 1 EP - 52 VL - 144 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2705/ DO - 10.24033/bsmf.2705 LA - en ID - BSMF_2016__144_1_1_0 ER -
%0 Journal Article %A Hou, Xuanji %A Popov, Georgi %T Rigidity of reducibility of Gevrey quasi-periodic cocycles on $U(n)$ %J Bulletin de la Société Mathématique de France %D 2016 %P 1-52 %V 144 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2705/ %R 10.24033/bsmf.2705 %G en %F BSMF_2016__144_1_1_0
Hou, Xuanji; Popov, Georgi. Rigidity of reducibility of Gevrey quasi-periodic cocycles on $U(n)$. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 1, pp. 1-52. doi: 10.24033/bsmf.2705
Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math., Volume 164 (2006), pp. 911-940 (ISSN: 0003-486X) | MR | Zbl | DOI
Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles, Bull. Soc. Math. France, Volume 141 (2013), pp. 47-106 (ISSN: 0037-9484) | MR | Zbl | DOI
Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys., Volume 146 (1992), pp. 447-482 http://projecteuclid.org/euclid.cmp/1104250354 (ISSN: 0010-3616) | MR | Zbl | DOI
, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., Providence, RI, 2001, pp. 679-705 | MR | Zbl | DOI
Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations, Volume 20 (2008), pp. 831-866 (ISSN: 1040-7294) | MR | Zbl | DOI
The rigidity of reducibility of cocycles on , Nonlinearity, Volume 21 (2008), pp. 2317-2330 (ISSN: 0951-7715) | MR | Zbl | DOI
Local rigidity of reducibility of analytic quasi-periodic cocycles on , Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 441-454 (ISSN: 1078-0947) | MR | Zbl | DOI
Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., Volume 190 (2012), pp. 209-260 (ISSN: 0020-9910) | MR | Zbl | DOI
Réductibilité des systèmes produits-croisés à valeurs das des groupes compacts, Astérisque, Volume 259 (1999) | MR | Zbl | Numdam
Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans des groupes compacts, Ann. Sci. École Norm. Sup., Volume 32 (1999), pp. 187-240 (ISSN: 0012-9593) | MR | Zbl | Numdam | DOI
Global density of reducible quasi-periodic cocycles on , Ann. of Math., Volume 154 (2001), pp. 269-326 (ISSN: 0003-486X) | MR | Zbl | DOI
Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on (preprint arXiv:math/0402333 )
Problèmes aux limites non homogènes et applications. Vol. 3, Travaux et Recherches Mathématiques, 20, Dunod, 1970, 328 pages | MR | Zbl
Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. IHÉS, Volume 96 (2002), p. 199-275 (2003) (ISSN: 0073-8301) | MR | Zbl | Numdam | DOI
Gevrey normal form and effective stability of Lagrangian tori, Discrete Contin. Dyn. Syst. Ser. S, Volume 3 (2010), pp. 643-666 (ISSN: 1937-1632) | MR | Zbl | DOI
Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré, Volume 1 (2000), pp. 223-248 (ISSN: 1424-0637) | MR | Zbl | DOI
KAM theorem for Gevrey Hamiltonians, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 1753-1786 (ISSN: 0143-3857) | MR | Zbl | DOI
Cité par Sources :






