Let denotes the Möbius function and be the Thue-Morse sequence, defined by if the number of 1 in the dyadic representation of is even and otherwise. The aim of this work is to give an asymptotic formula for and to prove that for big enough. This shows that square-free integers provide a first example of non-linear Moser-Newman phenomenon. Our method gives a similar result for -th power free integers.
DOI : 10.24033/bsmf.2699
Mots-clés : Suite de Thue-Morse, nombres sans facteur carré, sommes trigonométriques.
@article{BSMF_2015__143_3_599_0,
author = {Mauduit, Christian and Moreira, Carlos Gustavo},
title = {Ph\'enom\`ene de {Moser-Newman} pour les nombres sans facteur carr\'e},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {599--617},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {3},
doi = {10.24033/bsmf.2699},
mrnumber = {3417734},
zbl = {1352.11015},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2699/}
}
TY - JOUR AU - Mauduit, Christian AU - Moreira, Carlos Gustavo TI - Phénomène de Moser-Newman pour les nombres sans facteur carré JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 599 EP - 617 VL - 143 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2699/ DO - 10.24033/bsmf.2699 LA - fr ID - BSMF_2015__143_3_599_0 ER -
%0 Journal Article %A Mauduit, Christian %A Moreira, Carlos Gustavo %T Phénomène de Moser-Newman pour les nombres sans facteur carré %J Bulletin de la Société Mathématique de France %D 2015 %P 599-617 %V 143 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2699/ %R 10.24033/bsmf.2699 %G fr %F BSMF_2015__143_3_599_0
Mauduit, Christian; Moreira, Carlos Gustavo. Phénomène de Moser-Newman pour les nombres sans facteur carré. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 3, pp. 599-617. doi: 10.24033/bsmf.2699
, Sequences and their applications (Singapore, 1998) (Springer Ser. Discrete Math. Theor. Comput. Sci.), Springer, London, 1999, pp. 1-16 | MR | Zbl
On a conjecture of Dekking: the sum of digits of even numbers, J. Théor. Nombres Bordeaux, Volume 26 (2014), pp. 17-24 (ISSN: 1246-7405) | Numdam | MR | Zbl | DOI
Ergodic properties of square-free numbers, J. Eur. Math. Soc. (JEMS), Volume 15 (2013), pp. 1343-1374 (ISSN: 1435-9855) | MR | Zbl | DOI
A summation formula related to the binary digits, Invent. Math., Volume 73 (1983), pp. 107-115 (ISSN: 0020-9910) | MR | Zbl | DOI
Sommes des chiffres de multiples d'entiers, Ann. Inst. Fourier (Grenoble), Volume 55 (2005), pp. 2423-2474 (ISSN: 0373-0956) | Numdam | MR | Zbl | DOI
Rarified sums of the Thue-Morse sequence, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 609-642 (ISSN: 0002-9947) | MR | Zbl | DOI
Newman's phenomenon for generalized Thue-Morse sequences, Discrete Math., Volume 308 (2008), pp. 1191-1208 (ISSN: 0012-365X) | MR | Zbl | DOI
Discrépance des progressions arithmétiques dans la suite de Morse, C. R. Acad. Sci. Paris Sér. I Math., Volume 297 (1983), pp. 145-148 (ISSN: 0249-6291) | MR | Zbl
Automata, languages, and machines. Vol. A, Academic Press, New York, 1974, 451 pages (Pure and Applied Mathematics, Vol. 58) | MR | Zbl
Sommes des chiffres et nombres presque premiers, Math. Ann., Volume 305 (1996), pp. 571-599 (ISSN: 0025-5831) | MR | Zbl | DOI
Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., Volume 13 (1967/1968), pp. 259-265 (ISSN: 0065-1036) | MR | Zbl | DOI
The fractal structure of rarefied sums of the Thue-Morse sequence, J. Number Theory, Volume 42 (1992), pp. 1-19 (ISSN: 0022-314X) | MR | Zbl | DOI
, Séminaire Lotharingien de Combinatoire (Gerolfingen, 1993) (Prépubl. Inst. Rech. Math. Av.), Volume 1993/34, Univ. Louis Pasteur, Strasbourg, 1993, pp. 35-42 | MR
Investigations in the theory of -additive and -multiplicative functions. I, Acta Math. Hungar., Volume 91 (2001), pp. 53-78 (ISSN: 0236-5294) | MR | Zbl | DOI
Analytic number theory, American Mathematical Society Colloquium Publications, 53, Amer. Math. Soc., Providence, RI, 2004, 615 pages (ISBN: 0-8218-3633-1) | MR | Zbl
Arithmetic problems with numbers of a special type, Mat. Zametki, Volume 66 (1999), pp. 315-317 (ISSN: 0025-567X) | MR | Zbl | DOI
A remark on a theorem of H. Daboussi, Acta Math. Hungar., Volume 47 (1986), pp. 223-225 (ISSN: 0236-5294) | MR | Zbl | DOI
Multiplicative properties of the Thue-Morse sequence, Period. Math. Hungar., Volume 43 (2001), pp. 137-153 (ISSN: 0031-5303) | MR | Zbl | DOI
On the distribution in residue classes of integers with a fixed sum of digits, Ramanujan J., Volume 9 (2005), pp. 45-62 (ISSN: 1382-4090) | MR | Zbl | DOI
La somme des chiffres des carrés, Acta Math., Volume 203 (2009), pp. 107-148 (ISSN: 0001-5962) | MR | Zbl | DOI
Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math., Volume 171 (2010), pp. 1591-1646 (ISSN: 0003-486X) | MR | Zbl | DOI
On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith., Volume 81 (1997), pp. 145-173 (ISSN: 0065-1036) | MR | Zbl | DOI
On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc., Volume 21 (1969), pp. 719-721 (ISSN: 0002-9939) | MR | Zbl | DOI
Binary digit distribution over naturally defined sequences, Trans. Amer. Math. Soc., Volume 213 (1975), pp. 71-78 (ISSN: 0002-9947) | MR | Zbl | DOI
Uniqueness of the measure of maximal entropy for the squarefree flow (preprint arXiv:1205.2905 ) | MR
Mémoire sur quelques relations entre les puissances de nombres, C. R. Acad. Sci. Paris, Volume 33 (1851)
Three lectures on the Möbius fonction, randomness and dynamics (2010) ( http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures%282%29.pdf ) | MR
Generalized Newman phenomena and digit conjectures on primes, Int. J. Math. Math. Sci. (2008) (ISSN: 0161-1712) | MR | Zbl | DOI
A conjecture on primes and a step towards justification (preprint arXiv:0706.0786 )
Cité par Sources :






