[Estimations pour les opérateurs pseudo-différentiels multilinéaires et multiparamètres]
We establish the pseudo-differential variant of the estimates for multi-linear and multi-parameter Coifman-Meyer multiplier operators proved by C. Muscalu, J. Pipher, T. Tao and C. Thiele in [21, 22]. This gives an affirmative answer to the question, raised in the book of C. Muscalu and W. Schlag [23], on whether the estimates for multi-linear and multi-parameter pseudo-differential operators hold.
DOI : 10.24033/bsmf.2698
Keywords: Multi-linear and multi-parameter pseudo-differential operators, One-parameter and multi-parameter paraproducts, $L^{p}$ estimates, Coifman-Meyer theorem.
@article{BSMF_2015__143_3_567_0,
author = {Dai, Wei and Lu, Guozhen},
title = {$L^{p}$ estimates for multi-linear and multi-parameter pseudo-differential operators},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {567--597},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {3},
doi = {10.24033/bsmf.2698},
mrnumber = {3417733},
zbl = {1335.47033},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2698/}
}
TY - JOUR
AU - Dai, Wei
AU - Lu, Guozhen
TI - $L^{p}$ estimates for multi-linear and multi-parameter pseudo-differential operators
JO - Bulletin de la Société Mathématique de France
PY - 2015
SP - 567
EP - 597
VL - 143
IS - 3
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2698/
DO - 10.24033/bsmf.2698
LA - en
ID - BSMF_2015__143_3_567_0
ER -
%0 Journal Article
%A Dai, Wei
%A Lu, Guozhen
%T $L^{p}$ estimates for multi-linear and multi-parameter pseudo-differential operators
%J Bulletin de la Société Mathématique de France
%D 2015
%P 567-597
%V 143
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2698/
%R 10.24033/bsmf.2698
%G en
%F BSMF_2015__143_3_567_0
Dai, Wei; Lu, Guozhen. $L^{p}$ estimates for multi-linear and multi-parameter pseudo-differential operators. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 3, pp. 567-597. doi: 10.24033/bsmf.2698
On the Hörmander classes of bilinear pseudodifferential operators, Integral Equations Operator Theory, Volume 67 (2010), pp. 341-364 (ISSN: 0378-620X) | MR | Zbl | DOI
Symbolic calculus and the transposes of bilinear pseudodifferential operators, Comm. Partial Differential Equations, Volume 28 (2003), pp. 1161-1181 (ISSN: 0360-5302) | MR | Zbl | DOI
Local estimates and global continuities in Lebesgue spaces for bilinear operators, Anal. PDE, Volume 1 (2008), pp. 1-27 (ISSN: 1948-206X) | MR | Zbl | DOI
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | Numdam | MR | Zbl | DOI
Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal., Volume 101 (2014), pp. 98-112 (ISSN: 0362-546X) | MR | Zbl | DOI
Polynomial growth estimates for multilinear singular integral operators, Acta Math., Volume 159 (1987), pp. 51-80 (ISSN: 0001-5962) | MR | Zbl | DOI
Au delá des opérateurs pseudo-différentiels, Astérisque, Volume 57 (1978) | MR | Zbl | Numdam
Singular integrals on product spaces, Adv. in Math., Volume 45 (1982), pp. 117-143 (ISSN: 0001-8708) | MR | Zbl | DOI
Bilinear operators with non-smooth symbol. I, J. Fourier Anal. Appl., Volume 7 (2001), pp. 435-467 (ISSN: 1069-5869) | MR | Zbl | DOI
Multilinear interpolation between adjoint operators, J. Funct. Anal., Volume 199 (2003), pp. 379-385 (ISSN: 0022-1236) | MR | Zbl | DOI
Multilinear Calderón-Zygmund theory, Adv. Math., Volume 165 (2002), pp. 124-164 (ISSN: 0001-8708) | MR | Zbl | DOI
On multilinear singular integrals of Calderón-Zygmund type, Publ. Mat. (Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000)), Volume extra (2002), pp. 57-91 (ISSN: 0214-1493) | MR | Zbl | DOI
Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators, Adv. Nonlinear Stud., Volume 14 (2014), pp. 1055-1082 (ISSN: 1536-1365) | MR | Zbl | DOI
Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana, Volume 1 (1985), pp. 55-91 (ISSN: 0213-2230) | MR | Zbl | DOI
Multilinear estimates and fractional integration, Math. Res. Lett., Volume 6 (1999), pp. 1-15 (ISSN: 1073-2780) | MR | Zbl | DOI
Paraproducts in one and several parameters, Forum Math., Volume 19 (2007), pp. 325-351 (ISSN: 0933-7741) | MR | Zbl | DOI
Bi-parameter and bilinear Calderón-Vaillancourt theorem with minimal smoothness (preprint)
estimates for a trilinear pseudo-differential operator with flag symbols (preprint) | MR
Wavelets, Cambridge Studies in Advanced Math., 48, Cambridge Univ. Press, Cambridge, 1997, 315 pages (ISBN: 0-521-42001-6; 0-521-79473-0) | MR | Zbl
Paraproducts with flag singularities. I. A case study, Rev. Mat. Iberoam., Volume 23 (2007), pp. 705-742 (ISSN: 0213-2230) | MR | Zbl | DOI
Bi-parameter paraproducts, Acta Math., Volume 193 (2004), pp. 269-296 (ISSN: 0001-5962) | MR | Zbl | DOI
Multi-parameter paraproducts, Rev. Mat. Iberoam., Volume 22 (2006), pp. 963-976 (ISSN: 0213-2230) | MR | Zbl | DOI
Classical and Multilinear Harmonic Analysis, II, Cambridge Studies in Advanced Math., 138, Cambridge Univ. Press, 2013 | MR | Zbl
Multi-linear operators given by singular multipliers, J. Amer. Math. Soc., Volume 15 (2002), pp. 469-496 (ISSN: 0894-0347) | MR | Zbl | DOI
estimates for the biest. II. The Fourier case, Math. Ann., Volume 329 (2004), pp. 427-461 (ISSN: 0025-5831) | MR | Zbl | DOI
Unpublished notes I (2003) (IAS Princeton)
Lecture notes on harmonic analysis (2002) (UCLA, Department of Mathematics, Los Angeles)
Tools for PDE, Mathematical Surveys and Monographs, 81, Amer. Math. Soc., Providence, RI, 2000, 257 pages (ISBN: 0-8218-2633-6) | MR | Zbl
Cité par Sources :






