[Une présentation du mapping class groupe d'une surface non orientable]
Let denote the nonorientable surface of genus with boundary components and its mapping class group. We obtain an explicit finite presentation of for and all such that .
Notons la surface non orientable de genre avec composantes de bord et son mapping class groupe. On obtient une présentation finie explicite de pour et pour tout tel que .
DOI : 10.24033/bsmf.2697
Keywords: Mapping class group, nonorientable surface, group presentation.
Mots-clés : Mapping class groupe, surface non-orientable, présentation de groupe.
@article{BSMF_2015__143_3_503_0,
author = {Paris, Luis and Szepietowski, B{\l}a\.zej},
title = {A presentation for the mapping class group of a nonorientable surface},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {503--566},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {3},
doi = {10.24033/bsmf.2697},
mrnumber = {3417732},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2697/}
}
TY - JOUR AU - Paris, Luis AU - Szepietowski, Błażej TI - A presentation for the mapping class group of a nonorientable surface JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 503 EP - 566 VL - 143 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2697/ DO - 10.24033/bsmf.2697 LA - en ID - BSMF_2015__143_3_503_0 ER -
%0 Journal Article %A Paris, Luis %A Szepietowski, Błażej %T A presentation for the mapping class group of a nonorientable surface %J Bulletin de la Société Mathématique de France %D 2015 %P 503-566 %V 143 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2697/ %R 10.24033/bsmf.2697 %G en %F BSMF_2015__143_3_503_0
Paris, Luis; Szepietowski, Błażej. A presentation for the mapping class group of a nonorientable surface. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 3, pp. 503-566. doi: 10.24033/bsmf.2697
Finite presentations for the mapping class group via the ordered complex of curves, Adv. Geom., Volume 1 (2001), pp. 291-321 (ISSN: 1615-715X) | MR | Zbl | DOI
Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math., Volume 22 (1969), pp. 213-238 (ISSN: 0010-3640) | MR | Zbl | DOI
Braids, links, and mapping class groups, Annals of Math. Studies, 82, Princeton Univ. Press, 1974, 228 pages | MR | Zbl
On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc., Volume 71 (1972), pp. 437-448 | MR | Zbl | DOI
Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 (ISSN: 0020-9910) | MR | Zbl | DOI
Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra, Volume 32 (1984), pp. 1-10 (ISSN: 0022-4049) | MR | Zbl | DOI
A finite set of generators for the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc., Volume 65 (1969), pp. 409-430 | MR | Zbl | DOI
Curves on 2-manifolds and isotopies, Acta Math., Volume 115 (1966), pp. 83-107 (ISSN: 0001-5962) | MR | Zbl | DOI
A finite presentation of the mapping class group of a punctured surface, Topology, Volume 40 (2001), pp. 703-725 (ISSN: 0040-9383) | MR | Zbl | DOI
The second homology group of the mapping class group of an orientable surface, Invent. Math., Volume 72 (1983), pp. 221-239 (ISSN: 0020-9910) | MR | Zbl | DOI
, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Ann. of Math. Stud.), Volume 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 245-251 | MR | Zbl | DOI
Algebraic topology, Cambridge Univ. Press, Cambridge, 2002, 544 pages (ISBN: 0-521-79160-X; 0-521-79540-0) | MR | Zbl
A presentation for the mapping class group of a closed orientable surface, Topology, Volume 19 (1980), pp. 221-237 (ISSN: 0040-9383) | MR | Zbl | DOI
A complex of curves and a presentation for the mapping class group of a surface, Osaka J. Math., Volume 39 (2002), pp. 795-820 http://projecteuclid.org/euclid.ojm/1153492933 (ISSN: 0030-6126) | MR | Zbl
Mapping class groups of nonorientable surfaces, Geom. Dedicata, Volume 89 (2002), pp. 109-133 (ISSN: 0046-5755) | MR | Zbl | DOI
Presentations for the punctured mapping class groups in terms of Artin groups, Algebr. Geom. Topol., Volume 1 (2001), pp. 73-114 (ISSN: 1472-2747) | MR | Zbl | DOI
Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc., Volume 59 (1963), pp. 307-317 | MR | Zbl | DOI
On the homeomorphisms of a non-orientable surface, Proc. Cambridge Philos. Soc., Volume 61 (1965), pp. 61-64 | MR | Zbl | DOI
A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann., Volume 316 (2000), pp. 401-418 (ISSN: 0025-5831) | MR | Zbl | DOI
Some finitely presented subgroups of the automorphism group of a free group, J. Algebra, Volume 35 (1975), pp. 205-213 (ISSN: 0021-8693) | MR | Zbl | DOI
Dehn twists on nonorientable surfaces, Fund. Math., Volume 189 (2006), pp. 117-147 (ISSN: 0016-2736) | MR | Zbl | DOI
Commensurability of geometric subgroups of mapping class groups, Geom. Dedicata, Volume 143 (2009), pp. 117-142 (ISSN: 0046-5755) | MR | Zbl | DOI
Generating mapping class groups of nonorientable surfaces with boundary, Adv. Geom., Volume 10 (2010), pp. 249-273 (ISSN: 1615-715X) | MR | Zbl | DOI
A presentation for the mapping class group of a non-orientable surface from the action on the complex of curves, Osaka J. Math., Volume 45 (2008), pp. 283-326 http://projecteuclid.org/euclid.ojm/1216151101 (ISSN: 0030-6126) | MR | Zbl
A presentation for the mapping class group of the closed non-orientable surface of genus 4, J. Pure Appl. Algebra, Volume 213 (2009), pp. 2001-2016 (ISSN: 0022-4049) | MR | Zbl | DOI
Embedding the braid group in mapping class groups, Publ. Mat., Volume 54 (2010), pp. 359-368 (ISSN: 0214-1493) | MR | Zbl | DOI
Crosscap slides and the level 2 mapping class group of a nonorientable surface, Geom. Dedicata, Volume 160 (2012), pp. 169-183 (ISSN: 0046-5755) | MR | Zbl | DOI
Homological stability for the mapping class groups of non-orientable surfaces, Invent. Math., Volume 171 (2008), pp. 389-424 (ISSN: 0020-9910) | MR | Zbl | DOI
A simple presentation for the mapping class group of an orientable surface, Israel J. Math., Volume 45 (1983), pp. 157-174 (ISSN: 0021-2172) | MR | Zbl | DOI
An elementary approach to the mapping class group of a surface, Geom. Topol., Volume 3 (1999), pp. 405-466 (ISSN: 1465-3060) | MR | Zbl | DOI
Cité par Sources :






