[Anneaux d'opérateurs microdifférentiels pour les -modules arithmétiques. Construction et application aux variétés caractéristiques de courbes]
One aim of this paper is to develop a theory of microdifferential operators for arithmetic -modules. We first define the rings of microdifferential operators of arbitrary levels on arbitrary smooth formal schemes. A difficulty lies in the fact that there is no homomorphism between rings of microdifferential operators of different levels. To remedy this, we define the intermediate differential operators, and using these, we define the ring of microdifferential operators for . We conjecture that the characteristic variety of a -module is computed as the support of the microlocalization of a -module, and prove it in the curve case.
@article{BSMF_2015__143_1_35_0,
author = {Abe, Tomoyuki},
title = {Rings of microdifferential operators for arithmetic $\mathcal {D}$-modules {\textemdash} {Construction} and an application to the characteristic varieties for curves},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {35--107},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {1},
doi = {10.24033/bsmf.2680},
mrnumber = {3323344},
zbl = {1311.32003},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2680/}
}
TY - JOUR
AU - Abe, Tomoyuki
TI - Rings of microdifferential operators for arithmetic $\mathcal {D}$-modules — Construction and an application to the characteristic varieties for curves
JO - Bulletin de la Société Mathématique de France
PY - 2015
SP - 35
EP - 107
VL - 143
IS - 1
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2680/
DO - 10.24033/bsmf.2680
LA - en
ID - BSMF_2015__143_1_35_0
ER -
%0 Journal Article
%A Abe, Tomoyuki
%T Rings of microdifferential operators for arithmetic $\mathcal {D}$-modules — Construction and an application to the characteristic varieties for curves
%J Bulletin de la Société Mathématique de France
%D 2015
%P 35-107
%V 143
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2680/
%R 10.24033/bsmf.2680
%G en
%F BSMF_2015__143_1_35_0
Abe, Tomoyuki. Rings of microdifferential operators for arithmetic $\mathcal {D}$-modules — Construction and an application to the characteristic varieties for curves. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 1, pp. 35-107. doi: 10.24033/bsmf.2680
Langlands correspondence for isocrystals and existence of crystalline companion for curves (preprint arXiv:1310.0528 ) | MR
Langlands program for -adic coefficients and the petits camarades conjecture (preprint arXiv:1111.2479 ) | MR
On -adic product formula for epsilon factors, J. Inst. Math. Jussieu (2014), pp. 1-103
Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969, 128 pages | MR | Zbl
-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup., Volume 29 (1996), pp. 185-272 (ISSN: 0012-9593) | Numdam | MR | Zbl | DOI
-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr., Volume 81 (2000) (ISSN: 0249-633X) | MR | Zbl | Numdam
Introduction à la théorie arithmétique des -modules, Astérisque, Volume 279 (2002), pp. 1-80 (ISSN: 0303-1179) | MR | Zbl | Numdam
Analytic -modules and applications, Mathematics and its Applications, 247, Kluwer Academic Publishers Group, Dordrecht, 1993, 581 pages (ISBN: 0-7923-2114-6) | MR | Zbl | DOI
Non-Archimedean analysis, Grundl. Math. Wiss., 261, Springer, Berlin, 1984, 436 pages (ISBN: 3-540-12546-9) | MR | Zbl | DOI
Algèbre commutative, Hermann, 1985
-isocrystals and their monodromy groups, Ann. Sci. École Norm. Sup., Volume 25 (1992), pp. 429-464 (ISSN: 0012-9593) | Numdam | MR | Zbl | DOI
La conjecture de Weil. II, Publ. Math. I.H.É.S., Volume 52 (1980), pp. 137-252 (ISSN: 0073-8301) | Numdam | MR | Zbl | DOI
Microlocalization and stationary phase, Asian J. Math., Volume 8 (2004), pp. 747-768 http://projecteuclid.org/euclid.ajm/1118669698 (ISSN: 1093-6106) | MR | Zbl | DOI
Théorèmes de division sur et applications, Bull. Soc. Math. France, Volume 123 (1995), pp. 547-589 (ISSN: 0037-9484) | Numdam | MR | Zbl | DOI
Topologie algébrique et théorie des faisceaux, Hermann, 1960 | Zbl
Éléments de géométrie algébrique: I. Le langage des schémas, Publ. math. de l'IHÉS, Volume 4 (1960) | Zbl | Numdam | MR
Théorie des topos et cohomologie étale des schémas (SGA 4), Springer, 1972 | DOI
Zariskian filtrations, K $K$ -Monographs in math., 2, Kluwer, 1996 | MR | Zbl | DOI
On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979 (ISSN: 0034-5318) | MR | Zbl | DOI
Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., Volume 147 (2002), pp. 1-241 (ISSN: 0020-9910) | MR | Zbl | DOI
Lectures on modules and rings, Graduate Texts in Math., 189, Springer, New York, 1999, 557 pages (ISBN: 0-387-98428-3) | MR | Zbl | DOI
Transformations canoniques et spécialisation pour les -modules filtrés, Astérisque, Volume 130 (1985), pp. 56-129 (ISSN: 0303-1179) | MR | Numdam | Zbl
Microdifférentielles arithmétiques sur une courbe (personal notes)
-isocrystals and de Rham cohomology. II. Convergent isocrystals, Duke Math. J., Volume 51 (1984), pp. 765-850 (ISSN: 0012-7094) | MR | Zbl | DOI
Algebras of -adic distributions and admissible representations, Invent. Math., Volume 153 (2003), pp. 145-196 (ISSN: 0020-9910) | MR | Zbl | DOI
Cité par Sources :






