[Estimées résolvantes uniformes pour une équation de Helmholtz non dissipative]
We study the high frequency limit for a non-selfadjoint Helmholtz equation. This equation models the propagation of the electromagnetic field of a laser in an inhomogeneus material medium with non-constant absorption index. In this paper the absorption index can take negative values and we only use a damping condition on the classical limit of the problem. In this setting we first prove the absence of eigenvalue on the upper half-plane and close to an energy which satisfies this damping assumption. Then we generalize the resolvent estimates of Robert-Tamura and prove the limiting absorption principle. We finally study the semiclassical measures of the solution when the source term concentrates on a bounded submanifold of .
DOI : 10.24033/bsmf.2674
Keywords: Non-selfadjoint operators, resolvent estimates, limiting absorption principle, Helmholtz equation, semiclassical measures.
@article{BSMF_2014__142_4_591_0,
author = {Royer, Julien},
title = {Uniform resolvent estimates for a non-dissipative {Helmholtz} equation},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {591--633},
year = {2014},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {142},
number = {4},
doi = {10.24033/bsmf.2674},
mrnumber = {3306871},
zbl = {1315.35064},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2674/}
}
TY - JOUR AU - Royer, Julien TI - Uniform resolvent estimates for a non-dissipative Helmholtz equation JO - Bulletin de la Société Mathématique de France PY - 2014 SP - 591 EP - 633 VL - 142 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2674/ DO - 10.24033/bsmf.2674 LA - en ID - BSMF_2014__142_4_591_0 ER -
%0 Journal Article %A Royer, Julien %T Uniform resolvent estimates for a non-dissipative Helmholtz equation %J Bulletin de la Société Mathématique de France %D 2014 %P 591-633 %V 142 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2674/ %R 10.24033/bsmf.2674 %G en %F BSMF_2014__142_4_591_0
Royer, Julien. Uniform resolvent estimates for a non-dissipative Helmholtz equation. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 4, pp. 591-633. doi: 10.24033/bsmf.2674
Stabilization of Schrödinger equation in exterior domains, ESAIM, Control Optim. Calc. Var., Volume 13 (2007) no. 3, pp. 570-579 | MR | Zbl | Numdam | DOI
High frequency limit of the Helmholtz equations, Rev. Mat. Iberoam., Volume 18 (2002) no. 1, pp. 187-209 | MR | Zbl | DOI
Mesures limites pour l'équation de Helmholtz dans le cas non captif, Annales Fac. Sc. Toulouse, Volume 18 (2009) no. 3, pp. 459-493 | MR | Zbl | Numdam
Lower bound on the resolvent for trapped situations., C. R., Math., Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1279-1282 (ISSN: 1631-073X) | MR | Zbl | DOI
Semi-classical measures and defect measures., 1997 | MR | Zbl | Numdam
Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., Volume 5 (2002), pp. 221-241 | MR | Zbl | DOI
The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach, J. Funct. Anal., Volume 223 (2005) no. 1, pp. 204-257 | MR | Zbl | DOI
Semiclassical resolvent estimates for Schrödinger operators with Coulomb singularities, Annales de l'I.H.P., Volume 9 (2008) no. 4, pp. 775-815 | MR | Zbl
High frequency limit of the Helmholtz equation. II: Source on a general smooth manifold, Comm. Part. Diff. Equations, Volume 27 (2002) no. 3-4, pp. 607-651 | MR | Zbl | DOI
Degenerated codimension 1 crossings and resolvent estimates., Asymptotic Anal., Volume 65 (2009) no. 3-4, pp. 147-174 | MR | Zbl | DOI
A Short Course on Operator Semigroups, Universitext, Springer, 2006 | MR | Zbl
Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998 | MR | Zbl
Resolvent estimates and matrix-valued Schrödinger operator with eigenvalue crossings; application to Strichartz estimates., Commun. Partial Differ. Equations, Volume 33 (2008) no. 1, pp. 19-44 | MR | Zbl | DOI
Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C.R. Acad. Sciences, Volume 306 (1988), pp. 121-123 | MR | Zbl
Limiting absoption method and absolute continuity for the Schrödinger operator, J. Math. Kyoto Univ., Volume 12 (1972) no. 3, pp. 513-542 | MR | Zbl
Modified wave operators with time-independant modifiers, J. Fac. Sci. Tokio, Volume 32 (1985), pp. 77-104 | MR | Zbl
From classical to semiclassical non-trapping behaviour., C. R., Math., Acad. Sci. Paris, Volume 338 (2004) no. 7, pp. 545-548 | MR | Zbl | DOI
Non-trapping condition for semiclassical Schrödinger operators with matrix-valued potentials., Math. Phys. Electronic Journal, Volume 11 (2005) no. 2 | MR | Zbl
Équation des ondes amorties, 1996 | MR | Zbl | DOI
Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., Volume 78 (1981), pp. 391-408 | MR | Zbl | DOI
Method of Modern Mathematical Physics, IV, Analysis of Operator, Academic Press, 1979 | MR
Autour de l'appoximation semi-classique, Progress in Mathematics, 68, Birkhäuser, 1987 | MR | Zbl
Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections, Annales de l'I.H.P., section A, Volume 46 (1987) no. 4, pp. 415-442 | MR | Zbl | Numdam
Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Annales de l'I.H.P., section A, Volume 39 (1989) no. 1, pp. 155-192 | MR | Zbl | Numdam
Analyse haute fréquence de l'équation de Helmholtz dissipative, 2010 | Zbl
Limiting Absorption Principle for the dissipative Helmholtz equation, Comm. Part. Diff. Equations, Volume 35 (2010) no. 8, pp. 1458-1489 | MR | Zbl | DOI
Semiclassical measure for the solution of the dissipative Helmholtz equation., Jour. Diff. Equations, Volume 249 (2010), pp. 2703-2756 | MR | Zbl | DOI
The principle of limiting absorption for the non-selfadjoint Schrödinger operator in (), Publ. RIMS, Kyoto Univ., Volume 9 (1974), pp. 397-428 | MR | Zbl | DOI
Spectral representation for Schrödinger Operators with long-range potentials, Lecture Notes in Mathematics, 727, Springer-Verlag, 1979 | MR | Zbl | DOI
Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. RIMS, Kyoto Univ., Volume 36 (2000), pp. 573-611 | MR | Zbl | DOI
Time-decay of scattering solutions and classical trajectories, Annales de l'I.H.P., section A, Volume 47 (1987) no. 1, pp. 25-37 | MR | Zbl | Numdam
Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger Operators, Jour. Diff. Equations, Volume 71 (1988), pp. 348-395 | MR | Zbl | DOI
High-frequency limit of the Helmholtz equation with variable refraction index, Jour. of Func. Ana., Volume 230 (2006), pp. 116-168 | MR | Zbl | DOI
Semiclassical Analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | MR | Zbl | DOI
Cité par Sources :






