On the motion of a small body immersed in a two-dimensional incompressible perfect fluid
[Sur le mouvement d'un petit corps solide immergé dans un fluide parfait incompressible en deux dimensions]
Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 3, pp. 489-536

In this paper we prove that the motion of a solid body in a two dimensional incompressible perfect fluid converges, when the body shrinks to a point with fixed mass and circulation, to a variant of the vortex-wave system where the vortex, placed in the point occupied by the shrunk body, is accelerated by a lift force similar to the Kutta-Joukowski force of the irrotational theory.

Dans cet article nous prouvons que le mouvement d'un petit corps solide immergé dans un fluide parfait incompressible en deux dimensions converge, quand le corps se rétrécit en un point, avec sa masse et sa circulation fixées, vers une variante du système « Euler+point vortex » où le vortex, placé au point où le solide a rétréci, est accéléré par un terme de force de portance similaire à la force de Kutta-Joukowski de la théorie irrotationnelle.

Publié le :
DOI : 10.24033/bsmf.2672
Classification : 76B99, 70E99
Keywords: Fluid-solid interactions, incompressible perfect fluid, vortex-wave system, Kutta-Joukowski force.
Mots-clés : Interactions fluide-solide, fluide parfait incompressible, système « Euler+point vortex », force de Kutta-Joukowski.
@article{BSMF_2014__142_3_489_0,
     author = {Glass, Olivier and Lacave, Christophe and Sueur, Franck},
     title = {On the motion of a small body immersed in a two-dimensional incompressible perfect fluid},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {489--536},
     year = {2014},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {142},
     number = {3},
     doi = {10.24033/bsmf.2672},
     mrnumber = {3295721},
     zbl = {1329.76048},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2672/}
}
TY  - JOUR
AU  - Glass, Olivier
AU  - Lacave, Christophe
AU  - Sueur, Franck
TI  - On the motion of a small body immersed in a two-dimensional incompressible perfect fluid
JO  - Bulletin de la Société Mathématique de France
PY  - 2014
SP  - 489
EP  - 536
VL  - 142
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2672/
DO  - 10.24033/bsmf.2672
LA  - en
ID  - BSMF_2014__142_3_489_0
ER  - 
%0 Journal Article
%A Glass, Olivier
%A Lacave, Christophe
%A Sueur, Franck
%T On the motion of a small body immersed in a two-dimensional incompressible perfect fluid
%J Bulletin de la Société Mathématique de France
%D 2014
%P 489-536
%V 142
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2672/
%R 10.24033/bsmf.2672
%G en
%F BSMF_2014__142_3_489_0
Glass, Olivier; Lacave, Christophe; Sueur, Franck. On the motion of a small body immersed in a two-dimensional incompressible perfect fluid. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 3, pp. 489-536. doi: 10.24033/bsmf.2672

Arnold, Vladimir I.; Khesin, Boris A. Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer, New York, 1998, 374 pages (ISBN: 0-387-94947-X) | MR | Zbl | DOI

Bouchut, François Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 75-90 (ISSN: 0003-9527) | MR | Zbl | DOI

Chemin, Jean-Yves Fluides parfaits incompressibles, Astérisque, Volume 230 (1995), 177 pages (ISSN: 0303-1179) | MR | Zbl | Numdam

Childress, Stephen An introduction to theoretical fluid mechanics, Courant Lecture Notes in Math., 19, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2009, 201 pages (ISBN: 978-0-8218-4888-3) | MR

Dashti, Masoumeh; Robinson, James C. The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius, Arch. Ration. Mech. Anal., Volume 200 (2011), pp. 285-312 (ISSN: 0003-9527) | MR | Zbl | DOI

DiPerna, Ronald J.; Lions, Pierre-Louis Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547 (ISSN: 0020-9910) | MR | Zbl | DOI

DiPerna, Ronald J.; Majda, Andrew J. Concentrations in regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., Volume 40 (1987), pp. 301-345 (ISSN: 0010-3640) | MR | Zbl | DOI

Gérard-Varet, David; Lacave, Christophe The two-dimensional Euler equations on singular domains, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 131-170 (ISSN: 0003-9527) | MR | Zbl | DOI

Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Grundl. Math. Wiss., 224, Springer, Berlin, 1983, 513 pages (ISBN: 3-540-13025-X) | MR | Zbl | DOI

Glass, Olivier; Sueur, Franck On the motion of a rigid body in a two-dimensional irregular ideal flow, SIAM J. Math. Anal., Volume 44 (2012), pp. 3101-3126 (ISSN: 0036-1410) | MR | Zbl | DOI

Grotta Ragazzo, C.; Koiller, J.; Oliva, W. M. On the motion of two-dimensional vortices with mass, J. Nonlinear Sci., Volume 4 (1994), pp. 375-418 (ISSN: 0938-8974) | MR | Zbl | DOI

Iftimie, D.; Lopes Filho, M. C.; Nussenzveig Lopes, H. J. Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations, Volume 28 (2003), pp. 349-379 (ISSN: 0360-5302) | MR | Zbl | DOI

Judovič, V. I. Non-stationary flows of an ideal incompressible fluid, Z̆. Vyčisl. Mat. i Mat. Fiz., Volume 3 (1963), pp. 1032-1066 ; English translation: USSR Comput. Math. & Math. Physics 3 (1963), p. 1407–1456 (ISSN: 0044-4669) | MR

Kikuchi, Keisuke Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 30 (1983), pp. 63-92 (ISSN: 0040-8980) | MR | Zbl

Lacave, Christophe Two dimensional incompressible ideal flow around a thin obstacle tending to a curve, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009), pp. 1121-1148 (ISSN: 0294-1449) | MR | Zbl | Numdam | DOI

Lacave, Christophe Two-dimensional incompressible ideal flow around a small curve, Comm. Partial Differential Equations, Volume 37 (2012), pp. 690-731 (ISSN: 0360-5302) | MR | Zbl | DOI

Lacave, Christophe; Lopes Filho, M. C.; Nussenzveig Lopes, H. J. Asymptotic behavior of 2d incompressible ideal flow around small disks (in progress)

Lacave, Christophe; Miot, Evelyne Uniqueness for the vortex-wave system when the vorticity is constant near the point vortex, SIAM J. Math. Anal., Volume 41 (2009), pp. 1138-1163 (ISSN: 0036-1410) | MR | Zbl | DOI

Lions, Pierre-Louis Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, 3, The Clarendon Press, Oxford Univ. Press, New York, 1996, 237 pages (ISBN: 0-19-851487-5) | MR | Zbl

Lopes Filho, M. C. Vortex dynamics in a two-dimensional domain with holes and the small obstacle limit, SIAM J. Math. Anal., Volume 39 (2007), pp. 422-436 (ISSN: 0036-1410) | MR | Zbl | DOI

Marchioro, Carlo On the Euler equations with a singular external velocity field, Rend. Sem. Mat. Univ. Padova, Volume 84 (1990), p. 61-69 (1991) (ISSN: 0041-8994) | Numdam | MR | Zbl

Marchioro, Carlo; Pulvirenti, Mario, Mechanics, analysis and geometry: 200 years after Lagrange (North-Holland Delta Ser.), North-Holland, Amsterdam, 1991, pp. 79-95 | MR | Zbl

Marchioro, Carlo; Pulvirenti, Mario Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, 96, Springer, New York, 1994, 283 pages (ISBN: 0-387-94044-8) | MR | Zbl | DOI

Ortega, Jaime; Rosier, Lionel; Takahashi, Takéo On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 24 (2007), pp. 139-165 (ISSN: 0294-1449) | MR | Zbl | Numdam | DOI

Simader, Christian G.; Sohr, Hermann, Mathematical problems relating to the Navier-Stokes equation (Ser. Adv. Math. Appl. Sci.), Volume 11, World Sci. Publ., River Edge, NJ, 1992, pp. 1-35 | MR | Zbl | DOI

Cité par Sources :