[Boules exceptionnellement petites dans les arbres stables]
The -stable trees are random measured compact metric spaces that appear as the scaling limit of Galton-Watson trees whose offspring distribution lies in a -stable domain, . They form a specific class of Lévy trees (introduced by Le Gall and Le Jan in [24]) and the Brownian case corresponds to Aldous Continuum Random Tree (CRT). In this paper, we study fine properties of the mass measure, that is the natural measure on -stable trees. We first discuss the minimum of the mass measure of balls with radius and we show that this quantity is of order . We think that no similar result holds true for the maximum of the mass measure of balls with radius , except in the Brownian case: when , we prove that this quantity is of order . In addition, we compute the exact constant for the lower local density of the mass measure (and the upper one for the CRT), which continues previous results from [9, 10, 13].
Les arbres -stables sont des espaces métriques compacts à mesure aléatoire qui apparaissent en tant que limite de mise à l'échelle d'arbres de Galton-Watson dont les distributions sont situées dans un domaine -stable, . Ils forment une class spécifique des arbres de Lévy (introduite par Le Gall et Le Jan dans [24]) et le cas brownien correspond aux arbres aléatoires du continuum d'Aldous (CRT). Dans cet article nous étudions les propriétés fines de la mesure de masse, qui est la mesure naturelle des arbres -stables. Nous discutons d'abord le minimum de la mesure de masse des boules de rayon et nous montrons que cette quantité est de l'ordre de . Nous pensons qu'aucun résultat similaire n'est vrai pour le maximum des mesures de masse de boule de rayon , sauf dans le cas brownien : quand nous montrons que cette quantité est de l'ordre de . D'autre part, nous calculons la constante exacte de la densité local inférieure de la mesure de masse (et la supérieure pour le CRT), à la suite de résultats précédents de [9, 10, 13].
DOI : 10.24033/bsmf.2664
Keywords: Continuum random tree, Lévy trees, stable trees, mass measure, small balls.
Mots-clés : Arbre aléatoire du continuum, arbres de Lévy, arbres stables, mesure de masse, petites boules.
@article{BSMF_2014__142_2_223_0,
author = {Duquesne, Thomas and Wang, Guanying},
title = {Exceptionally small balls in stable trees},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {223--254},
year = {2014},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {142},
number = {2},
doi = {10.24033/bsmf.2664},
mrnumber = {3269345},
zbl = {1327.60168},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2664/}
}
TY - JOUR AU - Duquesne, Thomas AU - Wang, Guanying TI - Exceptionally small balls in stable trees JO - Bulletin de la Société Mathématique de France PY - 2014 SP - 223 EP - 254 VL - 142 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2664/ DO - 10.24033/bsmf.2664 LA - en ID - BSMF_2014__142_2_223_0 ER -
%0 Journal Article %A Duquesne, Thomas %A Wang, Guanying %T Exceptionally small balls in stable trees %J Bulletin de la Société Mathématique de France %D 2014 %P 223-254 %V 142 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2664/ %R 10.24033/bsmf.2664 %G en %F BSMF_2014__142_2_223_0
Duquesne, Thomas; Wang, Guanying. Exceptionally small balls in stable trees. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 2, pp. 223-254. doi: 10.24033/bsmf.2664
Fragmentation associated with Lévy processes using snake, Probab. Theory Related Fields, Volume 141 (2008), pp. 113-154 (ISSN: 0178-8051) | MR | Zbl | DOI
The continuum random tree. I, Ann. Probab., Volume 19 (1991), pp. 1-28 http://links.jstor.org/... (ISSN: 0091-1798) | MR | Zbl
The continuum random tree. III, Ann. Probab., Volume 21 (1993), pp. 248-289 http://links.jstor.org/... (ISSN: 0091-1798) | Zbl | MR
Lévy processes, Cambridge Tracts in Mathematics, 121, Cambridge Univ. Press, 1996, 265 pages (ISBN: 0-521-56243-0) | MR
Regular variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge Univ. Press, 1987, 491 pages (ISBN: 0-521-30787-2) | MR | Zbl | DOI
Scaling limits for simple random walks on random ordered graph trees, Adv. in Appl. Probab., Volume 42 (2010), pp. 528-558 (ISSN: 0001-8678) | DOI | Zbl | MR
-theory: an overview, European J. Combin., Volume 17 (1996), pp. 161-175 (ISSN: 0195-6698) | MR | Zbl | DOI
A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab., Volume 31 (2003), pp. 996-1027 (ISSN: 0091-1798) | MR | Zbl | DOI
, Lévy matters I (Lecture Notes in Math.), Volume 2001, Springer, 2010, pp. 93-136 | DOI | Zbl | MR
The exact packing measure of Lévy trees, Stochastic Process. Appl., Volume 122 (2012), pp. 968-1002 (ISSN: 0304-4149) | DOI | Zbl | MR
Random Trees, Lévy Processes and Spatial Branching Processes, Astérisque, 281, 2002 | MR | Zbl | Numdam
Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields, Volume 131 (2005), pp. 553-603 (ISSN: 0178-8051) | MR | Zbl | DOI
The Hausdorff measure of stable trees, ALEA Lat. Am. J. Probab. Math. Stat., Volume 1 (2006), pp. 393-415 (ISSN: 1980-0436) | MR
On the re-rooting invariance property of Lévy trees, Electron. Commun. Probab., Volume 14 (2009), pp. 317-326 (ISSN: 1083-589X) | MR | Zbl | DOI
Growth of Lévy trees, Probab. Theory Related Fields, Volume 139 (2007), pp. 313-371 (ISSN: 0178-8051) | MR | Zbl | DOI
Probability and real trees, Lecture Notes in Math., 1920, Springer, 2008, 193 pages (ISBN: 978-3-540-74797-0) | MR | Zbl | DOI
Rayleigh processes, real trees, and root growth with re-grafting, Probab. Theory Related Fields, Volume 134 (2006), pp. 81-126 (ISSN: 0178-8051) | MR | Zbl | DOI
Behavior near the extinction time in self-similar fragmentations. I. The stable case, Ann. Inst. Henri Poincaré Probab. Stat., Volume 46 (2010), pp. 338-368 (ISSN: 0246-0203) | MR | Zbl | Numdam | DOI
Metric structures for Riemannian and non-Riemannian spaces, Progress in Math., 152, Birkhäuser, 1999, 585 pages (ISBN: 0-8176-3898-9) | MR | Zbl
The genealogy of self-similar fragmentations with negative index as a continuum random tree, Electron. J. Probab., Volume 9 (2004), pp. 57-97 (ISSN: 1083-6489) | MR | Zbl | DOI
Lower tail probability estimates for subordinators and nondecreasing random walks, Ann. Probab., Volume 15 (1987), pp. 75-101 http://links.jstor.org/... (ISSN: 0091-1798) | MR
The uniform random tree in a Brownian excursion, Probab. Theory Related Fields, Volume 96 (1993), pp. 369-383 (ISSN: 0178-8051) | DOI | Zbl | MR
Spatial branching processes, random snakes and partial differential equations, Lectures in Mathematics ETH Zürich, Birkhäuser, 1999, 163 pages (ISBN: 3-7643-6126-3) | MR | Zbl | DOI
Branching processes in Lévy processes: the exploration process, Ann. Probab., Volume 26 (1998), pp. 213-252 (ISSN: 0091-1798) | DOI | MR
Self-similar fragmentations derived from the stable tree. I. Splitting at heights, Probab. Theory Related Fields, Volume 127 (2003), pp. 423-454 (ISSN: 0178-8051) | DOI | MR
Self-similar fragmentations derived from the stable tree. II. Splitting at nodes, Probab. Theory Related Fields, Volume 131 (2005), pp. 341-375 (ISSN: 0178-8051) | DOI | Zbl | MR
, Select. Transl. Math. Statist. and Probability, Vol. 1, Inst. Math. Statist. and Amer. Math. Soc., Providence, R.I., 1961, pp. 157-161 | MR | Zbl
Regenerative real trees, Ann. Probab., Volume 35 (2007), pp. 2091-2121 (ISSN: 0091-1798) | DOI | MR
Cité par Sources :






