Cheeger-différentiabilité d'applications de certains espaces de Sobolev
Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 1, pp. 63-93

On prouve la Cheeger-différentiabilité des applications de l'espace de Hajlasz M1,p(X,E) lorsque X est un certain type d'espace métrique mesuré (les espaces PI) et lorsque E appartient à une certaine classe d'espaces de Banach (les espaces de Banach GFDA ou plus généralement, les espaces de Banach RNP) pour un paramètre p assez grand relié à la constante de doublement de la mesure supportée par X. La classe d'espace de Banach considérée est la plus large possible et la dépendance de p en la constante de doublement de la mesure supportée par X est optimale.

The Cheeger-differentiability of maps f belonging to Hajlasz spaces M1,p(X,E) is proved. The assumption are rather simple. The metric space X is assumed to support a doubling measure μ for which a Poincaré inequality is satisfied. The target space E is assumed to be a RNP Banach space. Finally, the parameter p must be large enough compared to the doubling constant of the measure μ (a precise and optimal dependance is given by the way). Notice that the class of Banach spaces considered is the largest possible (it gives a new characterization of RNP in term of Cheeger-differentiability).

DOI : 10.24033/bsmf.2659
Classification : 30L99, 46T99
Mots-clés : Inégalites de Poincaré, mesure doublante, espaces de Hajlasz-Sobolev
Keywords: Poincaré inequality, doubling measure, Hajlasz-Sobolev spaces
@article{BSMF_2014__142_1_63_0,
     author = {Munnier, Vincent},
     title = {Cheeger-diff\'erentiabilit\'e d'applications de certains espaces de {Sobolev}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {63--93},
     year = {2014},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {142},
     number = {1},
     doi = {10.24033/bsmf.2659},
     mrnumber = {3248723},
     zbl = {1304.30076},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2659/}
}
TY  - JOUR
AU  - Munnier, Vincent
TI  - Cheeger-différentiabilité d'applications de certains espaces de Sobolev
JO  - Bulletin de la Société Mathématique de France
PY  - 2014
SP  - 63
EP  - 93
VL  - 142
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2659/
DO  - 10.24033/bsmf.2659
LA  - fr
ID  - BSMF_2014__142_1_63_0
ER  - 
%0 Journal Article
%A Munnier, Vincent
%T Cheeger-différentiabilité d'applications de certains espaces de Sobolev
%J Bulletin de la Société Mathématique de France
%D 2014
%P 63-93
%V 142
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2659/
%R 10.24033/bsmf.2659
%G fr
%F BSMF_2014__142_1_63_0
Munnier, Vincent. Cheeger-différentiabilité d'applications de certains espaces de Sobolev. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 1, pp. 63-93. doi: 10.24033/bsmf.2659

Alberico, Angela; Cianchi, Andrea Differentiability properties of Orlicz-Sobolev functions, Ark. Mat., Volume 43 (2005), pp. 1-28 (ISSN: 0004-2080) | MR | Zbl | DOI

Balogh, Zoltán M.; Rogovin, Kevin; Zürcher, Thomas The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal., Volume 14 (2004), pp. 405-422 (ISSN: 1050-6926) | MR | Zbl | DOI

Bourdon, Marc; Pajot, Hervé Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 2315-2324 (ISSN: 0002-9939) | MR | Zbl | DOI

Cheeger, Jeff Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999), pp. 428-517 (ISSN: 1016-443X) | MR | Zbl | DOI

Cheeger, Jeff; Kleiner, Bruce, Inspired by S. S. Chern (Nankai Tracts Math.), Volume 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 129-152 | MR | Zbl | DOI

Cheeger, Jeff; Kleiner, Bruce Characterization of the Radon-Nikodým property in terms of inverse limits, Astérisque, Volume 321 (2008), pp. 129-138 (ISBN: 978-285629-258-7, ISSN: 0303-1179) | MR | Zbl | Numdam

Cheeger, Jeff; Kleiner, Bruce Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property, Geom. Funct. Anal., Volume 19 (2009), pp. 1017-1028 (ISSN: 1016-443X) | MR | Zbl | DOI

Fuglede, Bent Extremal length and functional completion, Acta Math., Volume 98 (1957), pp. 171-219 (ISSN: 0001-5962) | MR | Zbl | DOI

Hajlasz, Piotr; Koskela, Pekka Sobolev met Poincaré, Mem. Amer. Math. Soc., Volume 145 (2000) (ISSN: 0065-9266) | DOI | MR

Heinonen, Juha Lectures on analysis on metric spaces, Universitext, Springer, New York, 2001, 140 pages (ISBN: 0-387-95104-0) | MR | Zbl | DOI

Heinonen, Juha; Koskela, Pekka Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998), pp. 1-61 (ISSN: 0001-5962) | MR | Zbl | DOI

Heinonen, Juha; Koskela, Pekka; Shanmugalingam, Nageswari; Tyson, Jeremy T. Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math., Volume 85 (2001), pp. 87-139 (ISSN: 0021-7670) | MR | Zbl | DOI

Keith, Stephen A differentiable structure for metric measure spaces, Adv. Math., Volume 183 (2004), pp. 271-315 (ISSN: 0001-8708) | MR | Zbl | DOI

Keith, Stephen; Zhong, Xiao The Poincaré inequality is an open ended condition, Ann. of Math., Volume 167 (2008), pp. 575-599 (ISSN: 0003-486X) | MR | Zbl | DOI

Laakso, T. J. Ahlfors Q-regular spaces with arbitrary Q>1 admitting weak Poincaré inequality, Geom. Funct. Anal., Volume 10 (2000), pp. 111-123 (ISSN: 1016-443X) | MR | Zbl | DOI

Lee, James R.; Naor, Assaf Extending Lipschitz functions via random metric partitions, Invent. Math., Volume 160 (2005), pp. 59-95 (ISSN: 0020-9910) | MR | Zbl | DOI

Lindenstrauss, Joram; Tzafriri, Lior Classical Banach spaces. I, Ergebn. Math. Grenzg., 92, Springer, 1977, 188 pages (ISBN: 3-540-08072-4) | MR | Zbl | DOI

Pansu, Pierre Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math., Volume 129 (1989), pp. 1-60 (ISSN: 0003-486X) | MR | Zbl | DOI

Pansu, Pierre, Actes du Séminaire de Théorie Spectrale et Géométrie. Vol. 25. Année 2006–2007 (Sémin. Théor. Spectr. Géom.), Volume 25, Univ. Grenoble I, Saint-Martin-d'Hères, 2008, pp. 159-176 | MR | Zbl | Numdam

Shanmugalingam, Nageswari Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, Volume 16 (2000), pp. 243-279 (ISSN: 0213-2230) | MR | Zbl | DOI

Cité par Sources :