On prouve la Cheeger-différentiabilité des applications de l'espace de Hajlasz lorsque est un certain type d'espace métrique mesuré (les espaces ) et lorsque appartient à une certaine classe d'espaces de Banach (les espaces de Banach GFDA ou plus généralement, les espaces de Banach RNP) pour un paramètre assez grand relié à la constante de doublement de la mesure supportée par . La classe d'espace de Banach considérée est la plus large possible et la dépendance de en la constante de doublement de la mesure supportée par est optimale.
The Cheeger-differentiability of maps belonging to Hajlasz spaces is proved. The assumption are rather simple. The metric space is assumed to support a doubling measure for which a Poincaré inequality is satisfied. The target space is assumed to be a RNP Banach space. Finally, the parameter must be large enough compared to the doubling constant of the measure (a precise and optimal dependance is given by the way). Notice that the class of Banach spaces considered is the largest possible (it gives a new characterization of RNP in term of Cheeger-differentiability).
Mots-clés : Inégalites de Poincaré, mesure doublante, espaces de Hajlasz-Sobolev
Keywords: Poincaré inequality, doubling measure, Hajlasz-Sobolev spaces
@article{BSMF_2014__142_1_63_0,
author = {Munnier, Vincent},
title = {Cheeger-diff\'erentiabilit\'e d'applications de certains espaces de {Sobolev}},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {63--93},
year = {2014},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {142},
number = {1},
doi = {10.24033/bsmf.2659},
mrnumber = {3248723},
zbl = {1304.30076},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2659/}
}
TY - JOUR AU - Munnier, Vincent TI - Cheeger-différentiabilité d'applications de certains espaces de Sobolev JO - Bulletin de la Société Mathématique de France PY - 2014 SP - 63 EP - 93 VL - 142 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2659/ DO - 10.24033/bsmf.2659 LA - fr ID - BSMF_2014__142_1_63_0 ER -
%0 Journal Article %A Munnier, Vincent %T Cheeger-différentiabilité d'applications de certains espaces de Sobolev %J Bulletin de la Société Mathématique de France %D 2014 %P 63-93 %V 142 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2659/ %R 10.24033/bsmf.2659 %G fr %F BSMF_2014__142_1_63_0
Munnier, Vincent. Cheeger-différentiabilité d'applications de certains espaces de Sobolev. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 1, pp. 63-93. doi: 10.24033/bsmf.2659
Differentiability properties of Orlicz-Sobolev functions, Ark. Mat., Volume 43 (2005), pp. 1-28 (ISSN: 0004-2080) | MR | Zbl | DOI
The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal., Volume 14 (2004), pp. 405-422 (ISSN: 1050-6926) | MR | Zbl | DOI
Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 2315-2324 (ISSN: 0002-9939) | MR | Zbl | DOI
Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999), pp. 428-517 (ISSN: 1016-443X) | MR | Zbl | DOI
, Inspired by S. S. Chern (Nankai Tracts Math.), Volume 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 129-152 | MR | Zbl | DOI
Characterization of the Radon-Nikodým property in terms of inverse limits, Astérisque, Volume 321 (2008), pp. 129-138 (ISBN: 978-285629-258-7, ISSN: 0303-1179) | MR | Zbl | Numdam
Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property, Geom. Funct. Anal., Volume 19 (2009), pp. 1017-1028 (ISSN: 1016-443X) | MR | Zbl | DOI
Extremal length and functional completion, Acta Math., Volume 98 (1957), pp. 171-219 (ISSN: 0001-5962) | MR | Zbl | DOI
Sobolev met Poincaré, Mem. Amer. Math. Soc., Volume 145 (2000) (ISSN: 0065-9266) | DOI | MR
Lectures on analysis on metric spaces, Universitext, Springer, New York, 2001, 140 pages (ISBN: 0-387-95104-0) | MR | Zbl | DOI
Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998), pp. 1-61 (ISSN: 0001-5962) | MR | Zbl | DOI
Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math., Volume 85 (2001), pp. 87-139 (ISSN: 0021-7670) | MR | Zbl | DOI
A differentiable structure for metric measure spaces, Adv. Math., Volume 183 (2004), pp. 271-315 (ISSN: 0001-8708) | MR | Zbl | DOI
The Poincaré inequality is an open ended condition, Ann. of Math., Volume 167 (2008), pp. 575-599 (ISSN: 0003-486X) | MR | Zbl | DOI
Ahlfors -regular spaces with arbitrary admitting weak Poincaré inequality, Geom. Funct. Anal., Volume 10 (2000), pp. 111-123 (ISSN: 1016-443X) | MR | Zbl | DOI
Extending Lipschitz functions via random metric partitions, Invent. Math., Volume 160 (2005), pp. 59-95 (ISSN: 0020-9910) | MR | Zbl | DOI
Classical Banach spaces. I, Ergebn. Math. Grenzg., 92, Springer, 1977, 188 pages (ISBN: 3-540-08072-4) | MR | Zbl | DOI
Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math., Volume 129 (1989), pp. 1-60 (ISSN: 0003-486X) | MR | Zbl | DOI
, Actes du Séminaire de Théorie Spectrale et Géométrie. Vol. 25. Année 2006–2007 (Sémin. Théor. Spectr. Géom.), Volume 25, Univ. Grenoble I, Saint-Martin-d'Hères, 2008, pp. 159-176 | MR | Zbl | Numdam
Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, Volume 16 (2000), pp. 243-279 (ISSN: 0213-2230) | MR | Zbl | DOI
Cité par Sources :







