This paper is devoted to establish an invariance principle where the limit process is a multifractional gaussian process with a multifractional function which takes its values in (1/2, 1). Some properties, such as regularity and local self-similarity of this process are studied. Moreover the limit process is compared to the multifractional brownian motion.
Ce papier a pour but d'établir un principe d'invariance dont le processus limite est gaussien et multifractionnaire avec une fonction de Hurst à valeurs dans (1/2, 1). Des propriétés telles que la régularité et l'autosimilarité locale de ce processus sont étudiées. De plus, le processus limite est comparé au mouvement brownien multifractionnaire.
Mots-clés : invariance principle, long range dependence, multifractional process, gaussian processes
@article{AIHPB_2008__44_3_475_0, author = {Cohen, Serge and Marty, Renaud}, title = {Invariance principle, multifractional gaussian processes and long-range dependence}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {475--489}, publisher = {Gauthier-Villars}, volume = {44}, number = {3}, year = {2008}, doi = {10.1214/07-AIHP127}, mrnumber = {2451054}, zbl = {1176.60021}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP127/} }
TY - JOUR AU - Cohen, Serge AU - Marty, Renaud TI - Invariance principle, multifractional gaussian processes and long-range dependence JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 475 EP - 489 VL - 44 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP127/ DO - 10.1214/07-AIHP127 LA - en ID - AIHPB_2008__44_3_475_0 ER -
%0 Journal Article %A Cohen, Serge %A Marty, Renaud %T Invariance principle, multifractional gaussian processes and long-range dependence %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 475-489 %V 44 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP127/ %R 10.1214/07-AIHP127 %G en %F AIHPB_2008__44_3_475_0
Cohen, Serge; Marty, Renaud. Invariance principle, multifractional gaussian processes and long-range dependence. Annales de l'I.H.P. Probabilités et statistiques, Volume 44 (2008) no. 3, pp. 475-489. doi : 10.1214/07-AIHP127. https://www.numdam.org/articles/10.1214/07-AIHP127/
[1] The Geometry of Random Fields. Wiley, London, 1981. | MR | Zbl
.[2] The covariance structure of multifractional Brownian motion, with application to long range dependence, Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000.
, and .[3] The generalized multifractional Brownian motion. Stat. Inference for Stoch. Process. 3 (2000) 7-18. | MR | Zbl
and .[4] Identifying the multifractional function of a Gaussian process. Statist. Probab. Lett. 39 (1998) 337-345. | MR | Zbl
, and .[5] Identification and properties of real harmonizable Lévy motions. Bernoulli 8 (2002) 97-115. | MR | Zbl
, and .[6] Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | EuDML | MR | Zbl
, and .[7] Convergence of Probability Measures. Wiley, New York, 1968. | MR | Zbl
.[8] From self-similarity to local self-similarity: the estimation problem. In Fractal in Engineering 3-16. J. Lévy-Véhel and C. Tricot (Eds). Springer, London, 1999. | MR | Zbl
.[9] The invariance principle for stationary processes. Theory Probab. Appl. 15 (1970) 487-498. | MR | Zbl
.[10] Fractals: Theory and Applications in Engineering. Springer, London, 1999. | MR | Zbl
, , and .[11] Real Harmonizable multifractional Lévy motions. Ann. Inst. H. Poincaré, Probab. Statist. 40 (2004) 259-277. | Numdam | MR | Zbl
.[12] Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968) 422-437. | MR | Zbl
, .[13] Multifractional Brownian motion: definition and preliminary results. INRIA research report, RR-2645, 1995.
and .[14] Time-varying fractionally integrated processes with nonstationary long memory, Theory Probab. Appl. (2007). To appear. | Zbl
, and .[15] Stable non-Gaussian Random Processes. Chapman and Hall, New York, 1994. | MR | Zbl
and .Cited by Sources: