This paper is devoted to establish an invariance principle where the limit process is a multifractional gaussian process with a multifractional function which takes its values in (1/2, 1). Some properties, such as regularity and local self-similarity of this process are studied. Moreover the limit process is compared to the multifractional brownian motion.
Ce papier a pour but d'établir un principe d'invariance dont le processus limite est gaussien et multifractionnaire avec une fonction de Hurst à valeurs dans (1/2, 1). Des propriétés telles que la régularité et l'autosimilarité locale de ce processus sont étudiées. De plus, le processus limite est comparé au mouvement brownien multifractionnaire.
Keywords: invariance principle, long range dependence, multifractional process, gaussian processes
@article{AIHPB_2008__44_3_475_0,
author = {Cohen, Serge and Marty, Renaud},
title = {Invariance principle, multifractional gaussian processes and long-range dependence},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {475--489},
year = {2008},
publisher = {Gauthier-Villars},
volume = {44},
number = {3},
doi = {10.1214/07-AIHP127},
mrnumber = {2451054},
zbl = {1176.60021},
language = {en},
url = {https://www.numdam.org/articles/10.1214/07-AIHP127/}
}
TY - JOUR AU - Cohen, Serge AU - Marty, Renaud TI - Invariance principle, multifractional gaussian processes and long-range dependence JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 475 EP - 489 VL - 44 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP127/ DO - 10.1214/07-AIHP127 LA - en ID - AIHPB_2008__44_3_475_0 ER -
%0 Journal Article %A Cohen, Serge %A Marty, Renaud %T Invariance principle, multifractional gaussian processes and long-range dependence %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 475-489 %V 44 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP127/ %R 10.1214/07-AIHP127 %G en %F AIHPB_2008__44_3_475_0
Cohen, Serge; Marty, Renaud. Invariance principle, multifractional gaussian processes and long-range dependence. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 475-489. doi: 10.1214/07-AIHP127
[1] . The Geometry of Random Fields. Wiley, London, 1981. | Zbl | MR
[2] , and . The covariance structure of multifractional Brownian motion, with application to long range dependence, Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000.
[3] and . The generalized multifractional Brownian motion. Stat. Inference for Stoch. Process. 3 (2000) 7-18. | Zbl | MR
[4] , and . Identifying the multifractional function of a Gaussian process. Statist. Probab. Lett. 39 (1998) 337-345. | Zbl | MR
[5] , and . Identification and properties of real harmonizable Lévy motions. Bernoulli 8 (2002) 97-115. | Zbl | MR
[6] , and . Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | Zbl | MR | EuDML
[7] . Convergence of Probability Measures. Wiley, New York, 1968. | Zbl | MR
[8] . From self-similarity to local self-similarity: the estimation problem. In Fractal in Engineering 3-16. J. Lévy-Véhel and C. Tricot (Eds). Springer, London, 1999. | Zbl | MR
[9] . The invariance principle for stationary processes. Theory Probab. Appl. 15 (1970) 487-498. | Zbl | MR
[10] , , and . Fractals: Theory and Applications in Engineering. Springer, London, 1999. | Zbl | MR
[11] . Real Harmonizable multifractional Lévy motions. Ann. Inst. H. Poincaré, Probab. Statist. 40 (2004) 259-277. | Zbl | MR | Numdam
[12] , . Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968) 422-437. | Zbl | MR
[13] and . Multifractional Brownian motion: definition and preliminary results. INRIA research report, RR-2645, 1995.
[14] , and . Time-varying fractionally integrated processes with nonstationary long memory, Theory Probab. Appl. (2007). To appear. | Zbl
[15] and . Stable non-Gaussian Random Processes. Chapman and Hall, New York, 1994. | Zbl | MR
Cité par Sources :






