On generating fuzzy Pareto solutions in fully fuzzy multiobjective linear programming via a compromise method
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4035-4045

In the present paper, it is unified and extended recent contributions on fully fuzzy multiobjective linear programming, and it is proposed a new method for obtaining fuzzy Pareto solutions of a fully fuzzy multiobjective linear programming problem. For its formulation, triangular fuzzy numbers and variables are combined with fuzzy partial orders and fuzzy arithmetic, and no ranking functions are required. By means of solving related crisp multiobjective linear problems, it is provided algorithms to generate fuzzy Pareto solutions; in particular, to generate compromise fuzzy Pareto solutions, what is a novelty in this field.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022196
Classification : 90C70, 03E72, 90C29
Keywords: Fully fuzzy multiobjective linear programming, fuzzy sets, fuzzy numbers, multiobjective optimization
@article{RO_2022__56_6_4035_0,
     author = {Arana-Jim\'enez, Manuel},
     title = {On generating fuzzy {Pareto} solutions in fully fuzzy multiobjective linear programming \protect\emph{via} a compromise method},
     journal = {RAIRO. Operations Research},
     pages = {4035--4045},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022196},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022196/}
}
TY  - JOUR
AU  - Arana-Jiménez, Manuel
TI  - On generating fuzzy Pareto solutions in fully fuzzy multiobjective linear programming via a compromise method
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 4035
EP  - 4045
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022196/
DO  - 10.1051/ro/2022196
LA  - en
ID  - RO_2022__56_6_4035_0
ER  - 
%0 Journal Article
%A Arana-Jiménez, Manuel
%T On generating fuzzy Pareto solutions in fully fuzzy multiobjective linear programming via a compromise method
%J RAIRO. Operations Research
%D 2022
%P 4035-4045
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022196/
%R 10.1051/ro/2022196
%G en
%F RO_2022__56_6_4035_0
Arana-Jiménez, Manuel. On generating fuzzy Pareto solutions in fully fuzzy multiobjective linear programming via a compromise method. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4035-4045. doi: 10.1051/ro/2022196

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations. Academic Press, New York (1983).

[2] M. Y. Ali, A. Sultana and A. F. M. K. Khan, Comparison of fuzzy multiplication operation on triangular fuzzy number. IOSR J. Math. 12 (2016) 35–41.

[3] M. Arana-Jiménez, editor. Optimiality Conditions in Vector Optimization. Bentham Science Publishers Ltd., Bussum (2010).

[4] M. Arana-Jiménez, Nondominated solutions in a fully fuzzy linear programming problem. Math Meth Appl Sci. 41 (2018) 7421–7430.

[5] M. Arana-Jiménez, Fuzzy Pareto solutions in fully fuzzy multiobjective linear programming. Adv. Intell. Syst. Comput. 991 (2020) 509–517.

[6] M. Arana-Jiménez and V. Blanco, On a fully fuzzy framework for minimax mixed integer linear programming. Comput. Ind. Eng. 128 (2019) 170–179.

[7] M. Arana-Jiménez and L. L. Salles, Sufficient condition for partial efficiency in a bicriteria nonlinear cutting stock problem. RAIRO: Oper. Res. 51 (2017) 709–717.

[8] M. Arana-Jiménez and M. C. Sánchez-Gil, On generating the set of nondominated solutions of a linearprogramming problem with parameterized fuzzy numbers. J. Global Optim. 77 (2020) 27–52.

[9] M. Arana-Jiménez, A. Rufián-Lizana, Y. Chalco-Cano and H. Román-Flores, Generalized convexity in fuzzy vector optimization through a linear ordering. Inf. Sci. 312 (2015) 13–24.

[10] M. Arana-Jiménez, V. Blanco and E. Fernández, On the fuzzy maximal covering location problem. Eur. J. Oper. Res. 283 (2020) 692–705.

[11] A. D. Báez-Sánchez, A. C. Moretti and M. A. Rojas-Medar, On polygonal fuzzy sets and numbers. Fuzzy Sets Syst. 209 (2012) 54–65.

[12] R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment. Manage. Sci. 17 (1970) 141–164.

[13] S. K. Bharati and S. R. Singh, A computational algorithm for the solution of fully fuzzy multi-objective linear programming problem. Int. J. Dyn. Control 6 (2018) 1384–1391.

[14] B. Bhardwaj and A. Kumar, A note on the paper “A simplified novel technique for solving fully fuzzy linear programming problems”. J. Optim. Theory Appl. 163 (2014) 685–696.

[15] L. Campos and J.-L. Verdegay, Linear programming problems and ranking of fuzzy numbers. Fuzzy Set. Syst. 32 (1989) 1–11.

[16] D. Chakraborty, D. K. Jana and T. K. Roy, A new approach to solve fully fuzzy transportation problem using triangular fuzzy number. Int. J. Oper. Res. 26 (2016) 153–179.

[17] M. Clemente-Císcar, S. San Matas and V. Giner-Bosch, A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings. Eur. J. Oper. Res. 239 (2014) 276–285.

[18] D. Dubois and H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978) 613–626.

[19] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980).

[20] A. Ebrahimnejad, S. H. Nasseri, F. H. Lotfi and M. Soltanifar, A primal-dual method for linear programming problems with fuzzy variables. Eur. J. Ind. Eng. 4 (2010) 189–209.

[21] R. Ezzati, E. Khorram and R. Enayati, A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Appl. Math. Modell. 39 (2015) 3183–3193.

[22] K. Ganesan and P. Veeramani, Fuzzy linear programs with trapezoidal fuzzy numbers. Ann. Oper. Res. 143 (2006) 305–315.

[23] M. Ghaznavi, F. Soleimani and N. Hoseinpoor, Parametric analysis in fuzzy number linear programming problems. Int. J. Fuzzy Syst. 18 (2016) 463–477.

[24] R. Goestschel and W. Voxman, Elementary fuzzy calculus. Fuzzy Sets Syst. 18 (1986) 31–43.

[25] M. L. Guerra and L. Stefanini, A comparison index for interval based on generalized Hukuhara difference. Soft. Comput. 16 (2012) 1931–1943.

[26] M. Hanss, Applied Fuzzy Arithmetic. Springer, Stuttgart (2005).

[27] M. Jimenez and A. Bilbao, Pareto-optimal solutions in fuzzy multiobjective linear programming. Fuzzy Sets Syst. 160 (2009) 2714–2721.

[28] A. Kaufmann and M. M. Gupta, Introduction to Fuzzy Arithmetic Theory and Applications. Van Nostrand Reinhold, New York (1985).

[29] I. U. Khan, T. Ahmad and N. Maan, A simplified novel technique for solving fully fuzzy linear programming problems. J. Optim. Theory Appl. 159 (2013) 536–546.

[30] I. U. Khan, T. Ahmad and N. Maan, A reply to a note on the paper “A simplified novel technique for solving fully fuzzy linear programming problems”. J. Optimiz. Theory Appl. 173 (2017) 353–356.

[31] A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems. Appl. Math. Modell. 35 (2011) 817–823.

[32] B. Liu, Uncertainty Theory. Springer-Verlag, Berlin (2015).

[33] Q. Liu and X. Gao, Fully fuzzy linear programming problem with triangular fuzzy numbers. J. Comput. Theor. Nanosci. 13 (2016) 4036–4041.

[34] F. H. Lotfi, T. Allahviranloo, M. A. Jondabeha and L. Alizadeh, Solving a fully fuzzy linear programming using lexicography method and fuzzy approximate solution. Appl. Math. Modell. 3 (2009) 3151–3156.

[35] H. R. Maleki, Ranking functions and their applications to fuzzy linear programming. Far East J. Math. Sci. 4 (2002) 283–301.

[36] H. R. Maleki, M. Tata and M. Mashinchi, Linear programming with fuzzy variables. Fuzzy Set. Syst. 109 (2000) 21–33.

[37] R. Marler and J. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multi. Optim. 26 (2004) 269–395.

[38] M. K. Mehlawat, A. Kumar, S. Yadav and W. Chen, Data envelopment analysis based fuzzy multi-objective portfolio selection model involving higher moments. Inf. Sci. 460 (2018) 128–150.

[39] R. E. Moore, Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966).

[40] R. E. Moore, Method and Applications of Interval Analysis. SIAM, Philadelphia (1979).

[41] H. S. Najafi and S. A. Edalatpanah, A note on “A new method for solving fully fuzzy linear programming problems”. Appl. Math. Modell. 37 (2013) 7865–7867.

[42] L. Stefanini, L. Sorini and M. L. Guerra, Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets Syst. 157 (2006) 2423–2455.

[43] L. Stefanini and M. Arana-Jiménez, Karush–Kuhn–Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Sets Syst. 262 (2019) 1–34.

[44] J. Tind and M. M. Wiecek, Augmented Lagrangian and Tchebycheff approaches in multiple objective programming. J. Global Optim. 14 (1999) 251–266.

[45] H. C. Wu, The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions. Fuzzy Optim. Decis. Making 8 (2009) 295–321.

[46] P. L. Yu, A class of solutions for group decision problems. Manage. Sci. 19 (1973) 936–946.

Cité par Sources :