
RAIRO-Oper. Res. 56 (2022) 4035–4045 RAIRO Operations Research
https://doi.org/10.1051/ro/2022196 www.rairo-ro.org

ON GENERATING FUZZY PARETO SOLUTIONS IN FULLY FUZZY
MULTIOBJECTIVE LINEAR PROGRAMMING VIA A COMPROMISE METHOD

Manuel Arana-Jiménez*

Abstract. In the present paper, it is unified and extended recent contributions on fully fuzzy multi-
objective linear programming, and it is proposed a new method for obtaining fuzzy Pareto solutions of
a fully fuzzy multiobjective linear programming problem. For its formulation, triangular fuzzy numbers
and variables are combined with fuzzy partial orders and fuzzy arithmetic, and no ranking functions
are required. By means of solving related crisp multiobjective linear problems, it is provided algorithms
to generate fuzzy Pareto solutions; in particular, to generate compromise fuzzy Pareto solutions, what
is a novelty in this field.
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1. Introduction

Fuzzy sets are a well known tool to deal with uncertainty on data, in such a way that its combination with
linear programming produces a very useful field, called fuzzy linear programming. This later offers researchers an
instrument to model decision making in fuzzy environment [9,12,15,20,22,35,36]. In a fuzzy linear programming
problem, although it is not necessary that all incomes and outcomes are fuzzy numbers, it is interesting and
convenient to propose a general model in which all elements can be fuzzy, what is called fully fuzzy linear
programming problem ((FFLP), for short). In a similar manner, there exists a variety of models about the
use of equalities, inequalities, and requirements on some properties of the triangular numbers involved in the
problem. In this regard, Lofti et al. [34] offered a method to obtain the fuzzy optimal solution of (FFLP) with
equality constraints with symmetric fuzzy numbers. Kumar et al. [31] offered a new method for locating the
fuzzy optimal solutions of (FFLP) with equality constraints, using ranking functions (see, for instance, [9], as
well as the bibliography there in). To that model and method, Najafi and Edalatpanah [41] made corrections.
Khan et al. [29] studied (FFLP) problems with inequalities, and they also use ranking functions to compare
the objective function values (see also [14, 30]). The methods provided by Lofti et al. [34] and Kumar et al.
[31] where recovered by Ezzati et al. [21] to deal with a multiobjective programming problem with equality
constraints. Some limitations of the existing method to solve (FFLP) have been pointed out by Liu and Gao
[33]. As applications, Chakraborty et al. [16] locate fuzzy optimal solutions in fuzzy transportation problems.
Recently, Arana-Jiménez [4] have provided a novel method to find fuzzy optimal (nondominated) solutions of
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(FFLP) problems with inequality constraints, with triangular fuzzy numbers and not necessarily symmetric, via
solving a crisp multiobjective linear programming problem. This method does not require ranking functions,
and has been extended to linear programming problem with parameterized fuzzy numbers by Arana-Jiménez
and Sánchez-Gil [8]. Reader can find very recent applications and extensions to solve fully fuzzy minimax mixed
integer linear programming and maximal covering location problems in Arana-Jiménez et al. [6, 10].

As an extension of that commented above, some models require decision maker to address not only one
objective, but several objectives at the same time. That is, a model with two or more objectives, which have
to be optimized, with conflicts among the objectives, what derives a multiobjectve programming problem. The
Pareto optimality in multiobjective programming is a well known concept of a solution to this type of problem,
with important applications in optimal control, economics, engineering, decision theory, among others (see [3,7]).

Recently, in a conference paper, Arana-Jiménez [5] has advanced a natural extension of such model to fully
fuzzy multiobjective linear programming, with the introduction of the fuzzy Pareto solutions. To this matter,
Author has proposed a method to generate fuzzy Pareto solutions by means of related crisp multiobjective
programming problems. The proposal does not require ranking functions, and then is different from that given
by Bharati et al. [13], who proposed the concept of Pareto-optimal solution suggested by Jimenez and Bilbao
[27]. Some applications can be found in Data Envelopment Analysis by Mehlawat et al. [38]. In that conference
paper [5], Author comments that proofs and examples are omitted and will be presented in a paper (extended
version). In this work, and as an extension of the proposals advanced by Arana-Jiménez [5], we address the
challenge of studying a linear optimization model where all variables and data can be fuzzy numbers, that is,
a fully fuzzy multiobjective linear programming problem ((FFMLP), for short). To this matter, and with no
ranking functions, we proof results that derive a method to to get a set of fuzzy Pareto solutions. Furthermore,
since the decision maker can require a very reduced set of fuzzy Pareto solutions, even only one in some cases,
we propose a new method based on a compromise method, as well as corresponding algorithm to get such fuzzy
Pareto solution.

The structure is as follows. In next section, we present notations, arithmetic and partial orders on fuzzy
numbers. Later, in Section 3, we formulate the fully fuzzy multiobjective linear programming problem, and
relate its fuzzy Pareto solutions to Pareto solutions of auxiliary crisp multiobjective programming problems, as
advanced in Arana-Jiménez [5]. Then, and based on the previous relations, in Section 4, we provide algorithms
to generate fuzzy Pareto solutions; in particular, an algorithm to attain a compromise fuzzy Pareto solution for
(FFMLP). To illustrate this latter, in Section 5 we present a numerical application. Finally, we conclude the
paper and present future works.

2. Preliminaries on arithmetic and partial order on fuzzy numbers

As usual in the literature, we consider a fuzzy set on R𝑛 as a mapping 𝑢 : R𝑛 → [0, 1]. Each fuzzy set 𝑢 has
associated a family of 𝛼-level sets, which are described as [𝑢]𝛼 = {𝑥 ∈ R𝑛 | 𝑢(𝑥) ≥ 𝛼} for any 𝛼 ∈ (0, 1], and
its support as 𝑠𝑢𝑝𝑝(𝑢) = {𝑥 ∈ R𝑛 | 𝑢(𝑥) > 0}. The 0-level of 𝑢 is defined as the closure of 𝑠𝑢𝑝𝑝(𝑢), that is,
[𝑢]0 = 𝑐𝑙(𝑠𝑢𝑝𝑝(𝑢)). A very useful type of fuzzy set to model parameters and variables are the fuzzy numbers.
Following Dubois and Prade [18, 19], a fuzzy set 𝑢 on R is said to be a fuzzy number if 𝑢 is normal, this is
there exists 𝑥0 ∈ R such that 𝑢(𝑥0) = 1, upper semi-continuous function, convex, and (iv) [𝑢]0 is compact.
F𝐶 denotes the family of all fuzzy numbers. The 𝛼-levels of a fuzzy number can be represented by means of
real interval, that is, [𝑢]𝛼 = [𝑢𝛼, 𝑢𝛼] ∈ K𝐶 , 𝑢𝛼, 𝑢𝛼 ∈ R, with K𝐶 is the set of real compact intervals. There
exist many families of fuzzy numbers that have been applied to model uncertainty in different situations. some
of the most popular are the L-R, triangular, trapezoidal, polygonal, gaussian, quasi-quadric, exponential, and
singleton fuzzy numbers. The reader is referred to Báez-Sánchez et al. [11], Hanss [26] and Stefanini et al.
[42] for a complete description of these families and their representation properties. Among them, we point out
triangular fuzzy numbers, because of their easy modeling and interpretation (see, for instance, [18,28,29,34,42]),
and whose definition is as follows.
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Definition 1. Given a fuzzy number 𝑎̃ = (𝑎−, 𝑎̂, 𝑎+) whose membership function is

𝑎̃(𝑥) =

⎧⎪⎨⎪⎩
𝑥−𝑎−

𝑎̂−𝑎− , if 𝑎− ≤ 𝑥 ≤ 𝑎̂,
𝑎+−𝑥
𝑎+−𝑎̂ , if 𝑎̂ < 𝑥 ≤ 𝑎+,

0, otherwise,

then, it is said to be a triangular fuzzy number (TFN for short).

In terms of 𝛼-levels, if we consider a triangular fuzzy number 𝑎̃ = (𝑎−, 𝑎̂, 𝑎+), then its 𝛼-levels are as follows:

[𝑎̃]𝛼 = [𝑎− + (𝑎̂− 𝑎−)𝛼, 𝑎+ − (𝑎+ − 𝑎̂)𝛼],

for all 𝛼 ∈ [0, 1]. This means that triangular fuzzy number are well determined by three real numbers 𝑎− ≤ 𝑎̂ ≤
𝑎+. A unique triangular fuzzy number is characterized by means of the previous formulation of 𝛼-levels, such
as Goestschel and Voxman [24] established. The set of all TFNs is denoted as TF.

Many optimization problems requires conditions about the nonpositivity or nonnegativity on some parameters
and variables involeved. To this matter, a fuzzy number 𝑎̃ is said to be nonnegative or nonpositive if 𝑎̃0 ≥ 0 or
𝑎̃0 ≤ 0, repectively. So, in the case that 𝑎̃ is a TFN, then 𝑎̃ nonnegative (nonpositive, respectively) if and only
if 𝑎− ≥ 0 (𝑎+ ≤ 0, respectively).

Classical arithmetic operations on intervals are well known, and can be referred to Moore [39,40] and Alefeld
and Herzberger [1]. A natural extension of these arithmetic operations to fuzzy numbers 𝑢, 𝑣 ∈ F𝐶 can be found
described in Liu [32] and Ghaznavi et al. [23], where the membership function of the operation 𝑢 * 𝑣, with
* ∈ {+, ·}, is defined by

(𝑢 * 𝑣)(𝑧) = sup
𝑧=𝑥*𝑦

min{𝑢(𝑥), 𝑣(𝑦)}. (1)

Furthermore, the previous arithmetic operations can be provided by means of their 𝛼-levels as follows (see,
[23], Thm. 2.6). For any 𝛼 ∈ [0, 1]:

[𝑢 + 𝑣]𝛼 = [𝑢𝛼 + 𝑣𝛼, 𝑢𝛼 + 𝑣𝛼], (2)
[𝜆𝑢]𝛼 = [min{𝜆𝑢𝛼, 𝜆𝑢𝛼}, max{𝜆𝑢𝛼, 𝜆𝑢𝛼}], (3)
[𝑢𝑣]𝛼 = [𝑢]𝛼 × [𝑣]𝛼

= [min {𝑢𝛼𝑣𝛼, 𝑢𝛼𝑣, 𝑢𝛼𝑣𝛼, 𝑢𝛼𝑣𝛼}, max {𝑢𝛼𝑣𝛼, 𝑢𝛼𝑣, 𝑢𝛼𝑣𝛼, 𝑢𝛼𝑣𝛼}]. (4)

TF is closed under addition and multiplication by scalar. The above operations (2) and (3) are straightforward
particularized to triangular fuzzy number as follows. Given 𝑎̃ = (𝑎−, 𝑎̂, 𝑎+), 𝑏̃ = (𝑏−, 𝑏̂, 𝑏+) ∈ TF and 𝜆 ∈ R,
then

𝑎̃ + 𝑏̃ =
(︁
𝑎− + 𝑏−, 𝑎̂ + 𝑏̂, 𝑎+ + 𝑏+

)︁
, (5)

𝜆𝑎̃ =
{︂

(𝜆𝑎−, 𝜆𝑎̂, 𝜆𝑎+) if 𝜆 ≥ 0,
(𝜆𝑎+, 𝜆𝑎̂, 𝜆𝑎−) if 𝜆 < 0.

(6)

However, TF is not closed under the multiplication operation (4) (see, for instance, the examples in [2]).
To avoid this situation, it is usual to apply a different multiplication operation between TFNs, such as those
referenced in Kaufmann and Gupta [28], Kumar et al. [31], Khan et al. [29] and Arana-Jiménez [4], which can be
considered as an approximation to the multiplication given in (1). To this regard, in Arana-Jiménez [4] readers
can find a discussion. Then, we provide the following multiplication operation, which is used throughout the
text:

𝑎̃𝑏̃ =
(︂(︁

𝑎̃𝑏̃
)︁−

,
(︁
𝑎̃𝑏̃

)︁
,
(︁
𝑎̃𝑏̃

)︁+
)︂

=
(︁

min
{︀
𝑎−𝑏−, 𝑎−𝑏+, 𝑎+𝑏−, 𝑎+𝑏+

}︀
, 𝑎̂𝑏̂, max

{︀
𝑎−𝑏−, 𝑎−𝑏+, 𝑎+𝑏−, 𝑎+𝑏+

}︀)︁
. (7)
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In the case that 𝑎̃ or 𝑏̃ is a nonnegative TFN, then the previous multiplication is reduced (see, for instance,
[28,31]). For instance, if 𝑏̃ is nonnegative, then

𝑎̃𝑏̃ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︁
𝑎−𝑏−, 𝑎̂𝑏̂, 𝑎+𝑏+

)︁
, if 𝑎− ≥ 0,(︁

𝑎−𝑏+, 𝑎̂𝑏̂, 𝑎+𝑏+
)︁
, if 𝑎− < 0, 𝑎+ ≥ 0,(︁

𝑎−𝑏+, 𝑎̂𝑏̂, 𝑎+𝑏−
)︁
, if 𝑎+ < 0.

(8)

And if 𝑎̃ and 𝑏̃ are nonnegative, then
𝑎̃𝑏̃ =

(︁
𝑎−𝑏−, 𝑎̂𝑏̂, 𝑎+𝑏+

)︁
. (9)

To compare two fuzzy numbers, there exist several definitions based on interval binary relations (see e.g.,
[25]) which provides partial orders in fuzzy sets (see, e.g., [43, 45]).

Definition 2. Given 𝑢, 𝑣 ∈ F𝐶 , it is said that:

(i) 𝜇 ≺ 𝜈 if and only if 𝜇
𝛼

< 𝜈𝛼 and 𝜇𝛼 < 𝜈𝛼, for all 𝛼 ∈ [0, 1],
(ii) 𝜇⪯− 𝜈 if and only if 𝜇

𝛼
≤ 𝜈𝛼 and 𝜇𝛼 ≤ 𝜈𝛼, for all 𝛼 ∈ [0, 1].

In a minimization process, and through the paper, we refer (𝜇 ≺ 𝜈)𝜇⪯− 𝜈 as a fuzzy number 𝜈 is (strictly)
dominated by a fuzzy number 𝜇, or equivalently, 𝜇 (strictly) dominates 𝜈. In a similar way, we define ≻, ⪰− .
In case of TFNs, the previous definition can be really reduced, as recently Arana-Jiménez and Blanco [6] have
proved:

Theorem 1. Given 𝑎̃ = (𝑎−, 𝑎̂, 𝑎+), 𝑏̃ = (𝑏−, 𝑏̂, 𝑏+) ∈ TF, then:

(i) 𝑎̃ ≺ 𝑏̃ if and only if 𝑎− < 𝑏−, 𝑎̂ < 𝑏̂ and 𝑎+ < 𝑏+,
(ii) 𝑎̃⪯− 𝑏̃ if and only if 𝑎− ≤ 𝑏−, 𝑎̂ ≤ 𝑏̂ and 𝑎+ ≤ 𝑏+.

The relations ≻, ⪰− are obtained in a similar manner. Note that to say that 𝑎̃ is nonnegative (previously
defined) is equivalent to write 𝑎̃⪰− 0̃ = (0, 0, 0).

3. Fully fuzzy multiobjective linear problem

Consider a fuzzy vector 𝑧 = (𝑧1, . . . , 𝑧𝑝) ∈ TF × · · · × TF = (TF)𝑝, with 𝑝 ∈ N. For the sake of sim-
plicity, we write 𝑧 = (𝑧𝑖)

𝑝
𝑖=1. In a same manner, 𝑥 = (𝑥−1 , 𝑥̂1, 𝑥

+
1 , . . . , 𝑥−𝑛 , 𝑥̂𝑛, 𝑥+

𝑛 ) ∈ R3𝑛 can be written as
𝑥 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗 )𝑛

𝑗=1, and so on. Following Arana-Jiménez [5], let us present a formulation of a Fully Fuzzy
Multiobjective Linear Problem, as well as a concept for its solutions.

(FFMLP) Min/Max 𝑧 = (𝑧𝑖)
𝑝
𝑖=1 =

⎛⎝ 𝑛∑︁
𝑗=1

𝑐𝑖𝑗 𝑥̃𝑗

⎞⎠𝑝

𝑖=1

(10)

s.t.
𝑛∑︁

𝑗=1

𝑎̃𝑟𝑗 𝑥̃𝑗
⪯− 𝑏̃𝑟, 𝑟 = 1, . . . ,𝑚, (11)

𝑥̃𝑗
⪰− 0̃, 𝑗 = 1, . . . , 𝑛, (12)

where 𝑧 is the fuzzy-valued vector objective function, each 𝑐𝑖 = (𝑐1, . . . , 𝑐𝑛) ∈ (TF)𝑛 is the fuzzy vector with the
coefficients of the 𝑖th component of the fuzzy-valued vector function, 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) is the fuzzy vector with
the fuzzy decision variables, and 𝑎̃𝑟𝑗 and 𝑏̃𝑟 are the fuzzy technical coefficients. Since we deal with (FFMLP)
without any kind of ranking function, it is necessary to define a nondominated fuzzy solution concept, as follows.
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Definition 3. Let ˜̄𝑥 be a feasible solution for (FFMLP), and ˜̄𝑧 the fuzzy-valued objective function at ˜̄𝑥. ˜̄𝑥
is said to be a fuzzy Pareto solution of (FFMLP) in the minimization (maximization) case if there does not
exist a feasible solution 𝑥̃, with 𝑧 the fuzzy-valued objective function at 𝑥̃, such that ˜̄𝑧 is dominated by 𝑧, i.e.,∑︀𝑛

𝑗=1𝑐𝑖𝑗 𝑥̃𝑗
⪯− (⪰− )

∑︀𝑛
𝑗=1𝑐𝑖𝑗 ˜̄𝑥𝑗 for all 𝑖 = 1, . . . , 𝑝, with

∑︀𝑛
𝑗=1𝑐𝑖0𝑗 𝑥̃𝑗 ̸=

∑︀𝑛
𝑗=1𝑐𝑖0𝑗 ˜̄𝑥𝑗 for some 𝑖0 ∈ {1, . . . , 𝑝}.

Following the notation of TFNs, we have:

𝑧𝑖 =
(︀
𝑧−𝑖 , 𝑧𝑖, 𝑧

+
𝑖

)︀
, 𝑖 = 1, . . . , 𝑝,

𝑥̃𝑗 =
(︀
𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗

)︀
, 𝑗 = 1, . . . , 𝑛,

𝑐𝑖𝑗 =
(︀
𝑐−𝑖𝑗 , 𝑐𝑖𝑗 , 𝑐

+
𝑖𝑗

)︀
, 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑛,

𝑎̃𝑟𝑗 =
(︀
𝑎−𝑟𝑗 , 𝑎̂𝑟𝑗 , 𝑎

+
𝑟𝑗

)︀
, 𝑟 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛,

𝑏̃𝑟 =
(︁
𝑏−𝑟 , 𝑏̂𝑟, 𝑏

+
𝑟

)︁
, 𝑟 = 1, . . . ,𝑚.

Let us remark that 𝑥̃𝑗 is a nonnegative TFN, and so the multiplication role is given by (8). This means that
𝑐𝑖𝑗 𝑥̃𝑗 is computed by one of the three expressions in (8), which only depends on 𝑐𝑖𝑗 . Since the fuzzy coefficients
𝑐𝑖𝑗 are known, then the expressions of 𝑐𝑖𝑗 𝑥̃𝑗 = ((𝑐𝑖𝑗 𝑥̃𝑗)−, (̂𝑐𝑖𝑗 𝑥̃𝑗), (𝑐𝑖𝑗 𝑥̃𝑗)+) are also known. The same occurs to
𝑎̃𝑟𝑗 𝑥̃𝑗 .

Problem (FFMLP) has associated the following crisp multiobjective problem:

(CMLP) Min/Max 𝑓(𝑥) =

⎛⎝ 𝑛∑︁
𝑗=1

(𝑐𝑖𝑗 𝑥̃𝑗)−,

𝑛∑︁
𝑗=1

(̂𝑐𝑖𝑗 𝑥̃𝑗),
𝑛∑︁

𝑗=1

(𝑐𝑖𝑗 𝑥̃𝑗)+
⎞⎠𝑝

𝑖=1

(13)

s.t.
𝑛∑︁

𝑗=1

(𝑎̃𝑟𝑗 𝑥̃𝑗)− ≤ 𝑏−𝑟 , 𝑟 = 1, . . . ,𝑚, (14)

𝑛∑︁
𝑗=1

̂(𝑎̃𝑟𝑗 𝑥̃𝑗) ≤ 𝑏̂𝑟, 𝑟 = 1, . . . ,𝑚, (15)

𝑛∑︁
𝑗=1

(𝑎̃𝑟𝑗 𝑥̃𝑗)+ ≤ 𝑏+
𝑟 , 𝑟 = 1, . . . ,𝑚, (16)

𝑥−𝑗 − 𝑥̂𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛, (17)

𝑥̂𝑗 − 𝑥+
𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛, (18)

𝑥−𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛. (19)

𝑓 = (𝑓11, 𝑓12, 𝑓13, . . . , 𝑓𝑝1, 𝑓𝑝2, 𝑓𝑝3) : R3𝑛 → R3𝑝 is a vector function, with the variable 𝑥 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥
+
𝑗 )𝑛

𝑗=1 ∈ R3𝑛,
with 𝑓𝑖𝑠 linear functions, with (𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}. And since all constraints are represented as linear
inequalities on the variable 𝑥, then (CMLP) is a multiobjective linear programming problem. Recall that a
feasible point 𝑥̄ ∈ R3𝑛 of (CMLP) in the minimization (maximization) case is said to be a Pareto solution if
there does not exist another feasible point 𝑥 such that 𝑓𝑖𝑠(𝑥̄) 5 (=)𝑓1𝑠(𝑥), for all (𝑖𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3},
and 𝑓𝑖0𝑠0(𝑥̄) < (>)𝑓𝑖0𝑠0(𝑥), for some (𝑖0, 𝑠0) ∈ {1, . . . , 𝑝} × {1, 2, 3}. The relationship between the fuzzy Pareto
solutions of (FFMLP) and the Pareto solutions of (CMLP) was recently advanced in a conference with no proof
by Arana-Jiménez [5], and following we present such result and we prove it.

Theorem 2. 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) with 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥
+
𝑗 ) ∈ TF, 𝑗 = 1, . . . , 𝑛, is a fuzzy Pareto solution of (FFMLP)

in the minimization (maximization) case if and only if 𝑥 = (𝑥−1 , 𝑥̂1, 𝑥
+
1 , . . . , 𝑥−𝑛 , 𝑥̂𝑛, 𝑥+

𝑛 ) ∈ R3𝑛 is a Pareto
solution of (CMLP) in the minimization (maximization) case.
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Proof. Firstly, let us prove that 𝑥 = (𝑥−1 , 𝑥̂1, 𝑥
+
1 , . . . , 𝑥−𝑛 , 𝑥̂𝑛, 𝑥+

𝑛 ) ∈ R3𝑛 is a feasible solution for (CMLP) if and
only if 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) with 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗 ) ∈ F𝐶 , 𝑗 = 1, . . . , 𝑛, is a feasible solution for (FFMLP). To this

purpose, if 𝑥 = (𝑥−1 , 𝑥̂1, 𝑥
+
1 , . . . , 𝑥−𝑛 , 𝑥̂𝑛, 𝑥+

𝑛 ) ∈ R3𝑛 is a feasible solution for (CMLP), then the conditions (17)–
(19) are held. These conditions are equivalent to 0 ≤ 𝑥−𝑗 ≤ 𝑥̂𝑗 ≤ 𝑥+

𝑗 , and in consequence, they are equivalent to
state that 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗 ) is a nonnegative fuzzy triangular number, for all 𝑗 = 1, . . . , 𝑛. Furthermore, by the

direct application Theorem 1, it follows that the remaining feasibility conditions on 𝑥, (14)–(16), are equivalent
to the feasibility conditions (11) on 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) in (FFMLP). Therefore, it is derived that 𝑥 is a feasible
solution for (CMLP) if and only if 𝑥̃ is a feasible solution for (FFMLP).

Now, let us consider only the minimization case, and so the related definitions of Pareto solutions. Let us
suppose that 𝑥 is a Pareto solution of (CMLP), and, following, we prove that the feasible solution 𝑥̃ is a
fuzzy Pareto solution of (FFMLP). To this end, suppose the contrary, that is, there exists a feasible solution
𝑦 = (𝑦1, . . . , 𝑦𝑛) for (FFMLP), with 𝑦𝑗 = (𝑦−𝑗 , 𝑦𝑗 , 𝑦

+
𝑗 ), 𝑗 = 1, . . . , 𝑛, such that

𝑛∑︁
𝑗=1

𝑐𝑖𝑗𝑦𝑗
⪯−

𝑛∑︁
𝑗=1

𝑐𝑖𝑗 𝑥̃𝑖𝑗 ,

𝑛∑︁
𝑗=1

𝑐𝑖𝑗𝑦𝑗 ̸=
𝑛∑︁

𝑗=1

𝑐𝑖𝑗 𝑥̃𝑗 , 𝑖 = 1, . . . , 𝑝. (20)

By Theorem 1, condition (20) is equivalent to

𝑛∑︁
𝑗=1

(𝑐𝑖𝑗𝑦𝑗)− ≤
𝑛∑︁

𝑗=1

(𝑐𝑖𝑗 𝑥̃𝑗)−,

𝑛∑︁
𝑗=1

(̂𝑐𝑖𝑗𝑦𝑗) ≤
𝑛∑︁

𝑗=1

(̂𝑐𝑖𝑗 𝑥̃𝑗),
𝑛∑︁

𝑗=1

(𝑐𝑖𝑗𝑦𝑗)+ ≤
𝑛∑︁

𝑗=1

(𝑐𝑖𝑗 𝑥̃𝑗)+, (21)

for all 𝑖 = 1, . . . , 𝑝, with at least one strict inequality. Since 𝑦 is feasible for (FFMLP), it follows that 𝑦 =
(𝑦−1 , 𝑦1, 𝑦

+
1 , . . . , 𝑦−𝑛 , 𝑦𝑛, 𝑦+

𝑛 ) ∈ R3𝑛 is feasible for (CMLP). But by (21), 𝑥 is not a Pareto solution of (CMLP),
what is a contradiction. Therefore, it follows that if 𝑥 is a Pareto solution of (CMLP), then 𝑥̃ is a fuzzy Pareto
solution of (FFMLP). Conversely, in a similar manner as before, let us suppose that 𝑥̃ is a fuzzy Pareto solution
of (FFMLP), and let us prove that 𝑥 is a Pareto solution of (CMLP). Since 𝑥̃ is feasible for (FFMLP), it follows
that 𝑥 is feasible for (CMLP). Let us suppose that 𝑥 is not a Pareto solution of (CMLP). This means that
there exists a feasible solution 𝑦 = (𝑦−1 , 𝑦1, 𝑦

+
1 , . . . , 𝑦−𝑛 , 𝑦𝑛, 𝑦+

𝑛 ) ∈ R3𝑛 for (CMLP) such that 𝑓𝑖𝑠(𝑦) ≤ 𝑓𝑖𝑠(𝑥), for
(𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}, with at least one strict inequality, what implies (21), with 𝑦 = (𝑦1, . . . , 𝑦𝑛) for
(FFLP), with 𝑦𝑗 = (𝑦−𝑗 , 𝑦𝑗 , 𝑦

+
𝑗 ), 𝑗 = 1, . . . , 𝑛. And (21) is equivalent to (20), which means that 𝑥̃ is a fuzzy

Pareto solution of (FFMLP), what is a contradiction with our initial assumptions. Therefore, it is proved that
if 𝑥̃ is a fuzzy Pareto solution of (FFMLP), then 𝑥 is a Pareto solution of (CMLP). For the maximization case
we proceed in a similar way. In consequence, the proof is complete. �

4. A proposal to generate fuzzy Pareto solutions for (FFMLP)

In the literature, we can find several methods to generate Pareto solutions of a multiobjective linear problem
(see [3] and the bibliography therein). Most popular methods are based on scalarization, such as the weighted
problems. These usually produce a set of solutions, whose extension can be partially controlled by the election
of a set of weights. The compromise methods allow us to reduce and orient the election of Pareto solutions.

4.1. Fuzzy Pareto solutions via weighted problems

The formulation of a weighted problem can be as follows. Given (CMLP) and 𝑤 = (𝑤11, 𝑤12, 𝑤13, . . . ,
𝑤𝑝1, 𝑤𝑝2, 𝑤𝑝3) ∈ R3𝑝, 𝑤𝑖𝑠 > 0,

∑︀𝑝
𝑖=1

∑︀3
𝑠=1 𝑤𝑖𝑠 = 1, we define its related weighted problem as

(CMLP)𝑤 Min/Max
𝑝∑︁

𝑖=1

3∑︁
𝑠=1

𝑤𝑖𝑠𝑓𝑖𝑠(𝑥)

s.t. (14)–(19).
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In Arana-Jiménez [5], it was advanced that we can generate a set of fuzzy Pareto solutions of (FFMLP) by
means of optimal solutions of the previous weighted problems. Such result was presented, but no proof was
provided. Thus, following, we write the result with a proof.

Theorem 3. Given 𝑤 = (𝑤11, 𝑤12, 𝑤13, . . . , 𝑤𝑝1, 𝑤𝑝2, 𝑤𝑝3) ∈ R3𝑝, with 𝑤𝑖𝑠 > 0,
∑︀𝑝

𝑖=1

∑︀3
𝑠=1 𝑤𝑖𝑠 = 1, if

𝑥 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥
+
𝑗 )𝑛

𝑗=1 ∈ R3𝑛 is an optimal solution in the minimization (maximization) case of the weighted
optimization problem (CMLP)𝑤, then 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) with 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗 ) ∈ TF, 𝑗 = 1, . . . , 𝑛, is a fuzzy

Pareto solution of (FFMLP) in its minimization (maximization) case.

Proof. Let us consider the minimization case in both problems. If 𝑥 = (𝑥−1 , 𝑥̂1, 𝑥
+
1 , . . . , 𝑥−𝑛 , 𝑥̂𝑛, 𝑥+

𝑛 ) ∈ R3𝑛 is an
optimal solution of the weighted optimization problem (CMLP)𝑤, then, it follows that 𝑥 is a Pareto solution
of (CMLP) (see [3], for instance). Then, by Theorem 2, we have that 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗 ) ∈ TF, 𝑗 = 1, . . . , 𝑛,

is a fuzzy Pareto solution of (FFMLP). For the maximization case we proceed similarly, and the proof is
complete. �

The previous result allows us to outline a method to get fuzzy Pareto solutions for (FFMLP) problem in the
minimization (maximization) case of (FFMLP) by means of the solutions of the minimization (maximization)
case of the weighed problems (CMLP)𝑤ℎ

. Therefore, given 𝑘 ∈ N and a set of weights 𝑆𝑊 , it is obtained a set
𝐷 of fuzzy Pareto solutions for (FFMLP) problem.

4.2. Compromise fuzzy Pareto solution

By now, and thanks to the previous method, we provide a set 𝐷 of fuzzy Pareto solutions for (FFMLP) to the
decision maker. Now, the decision maker can apply additional criterion to the set 𝐷 to choose some elements if
necessary. In the literature on multiobjective optimization, we find some criterion to select ’the best’ objective
function value among the nondominated set (usually, the images of the Pareto or weakly Pareto solutions).
Thanks to Theorem 2, we can perform a similar method for (FFMLP) by means of (MCLP). In this way, and
among the different methods to do this, we can use compromise programming to get a compromise solution
[46]. In this method, the procedure for obtaining a compromise solution is to minimize a distance between
the potential optimal solution and the utopia or ideal score in the criterion space (see also [17, 37, 46]), where
distances are defined on 𝑅𝑛. Let us recall that the utopia score is obtained by the optimization (minimization
or maximization in (MCLP)) of each component of the objective function, which usually is not attained by any
feasible point (see [3]). For further information on compromise solution methods, we refer Marler and Arora
[37], who offer a survey of methods to compute Pareto solutions in multiobjective optimization.

On the other hand, let us consider the lexicographic weighted Tchebycheff method. It is considered a min-max
method, and not a compromise method, such as reader can verify in [37]. This method depends on a collection of
weights. However, the lexicographic weighted Tchebycheff method provides a modification by Tind and Wiecek
[44], in which all weights are equal, eliminates the possibility of non-unique solutions and guarantees a Pareto
solution (see [44]). Such as Marler and Arora [37] describe, and in summary, in this particular case the method
is as follows. First, calculate the utopia objective function value, and then minimize the 𝑙∞ distance between
the non-dominated scores and the utopia score for the multiobjective optimization program. Then, include this
result as a new constraint, and minimize 𝑙1 distance between the non-dominated scores and the utopia score. In
order to not confuse this particular case with the general lexicographic weighted Tchebycheff method, we will
refer as Tind-Wiecek lexicographic Tchebycheff method from now on. Observe that this method, in essence,
provides a solution that is as close as possible (by means of distances) to the utopia point, what links with the
definition of compromise solution. Then, in our opinion, we can refer the solution given by the Tind-Wiecek
lexicographic Tchebycheff method as a compromise solution.

The previous steps of the Tind-Wiecek lexicographic Tchebycheff method are determined by means of the
following algorithm, depending of the optimization (minimization or maximization) case in (FFMLP), as follows
in Algorithms (1 and 2, respectively).
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Table 1. Algorithm for minimization.

Algorithm 1 (minimization case)

Step 1 Compute 𝑓𝑢𝑡
𝑖𝑠 = Min {𝑓𝑖𝑠(𝑥) : (14)–(19)}, for (𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}

Step 2 Compute 𝜆* = Min
{︀
𝜆 : 𝑓𝑖𝑠(𝑥)− 𝑓𝑢𝑡

𝑖𝑠 ≤ 𝜆, (14)–(19), ∀(𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}
}︀

Step 3 Solve Min
{︀∑︀𝑝

𝑖=1

∑︀3
𝑠=1𝑓𝑖𝑠(𝑥) : 𝑓𝑖𝑠(𝑥)− 𝑓𝑢𝑡

𝑖𝑠 ≤ 𝜆*, (14)–(19),∀(𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}
}︀

→ 𝑥̄ = (𝑥̄−1 , ^̄𝑥1, 𝑥̄
+
1 , . . . , 𝑥̄−𝑛 , ^̄𝑥𝑛, 𝑥̄+

𝑛 ) ∈ R3𝑛

Step 4 ˜̄𝑥𝑗 ← (𝑥̄−𝑗 , ^̄𝑥𝑗 , 𝑥̄
+
𝑗 ) ∈ TF, 𝑗 = 1, . . . 𝑛

˜̄𝑥← (˜̄𝑥1, ˜̄𝑥2, . . . ˜̄𝑥𝑛) ∈ (TF)𝑛

Step 5 End

Table 2. Algorithm for maximization.

Algorithm 2 (maximization case)

Step 1 Compute 𝑓𝑢𝑡
𝑖𝑠 = Max {𝑓𝑖𝑠(𝑥) : (14)–(19)}, for (𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}

Step 2 Compute 𝜆* = Min
{︀
𝜆 : 𝑓𝑢𝑡

𝑖𝑠 − 𝑓𝑖𝑠(𝑥) ≤ 𝜆, (14)–(19), ∀(𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}
}︀

Step 3 Solve Max
{︀∑︀𝑝

𝑖=1

∑︀3
𝑠=1𝑓𝑖𝑠(𝑥) : 𝑓𝑢𝑡

𝑖𝑠 − 𝑓𝑖𝑠(𝑥) ≤ 𝜆*, (14)–(19), ∀(𝑖, 𝑠) ∈ {1, . . . , 𝑝} × {1, 2, 3}
}︀

→ 𝑥̄ = (𝑥̄−1 , ^̄𝑥1, 𝑥̄
+
1 , . . . , 𝑥̄−𝑛 , ^̄𝑥𝑛, 𝑥̄+

𝑛 ) ∈ R3𝑛

Step 4 ˜̄𝑥𝑗 ← (𝑥̄−𝑗 , ^̄𝑥𝑗 , 𝑥̄
+
𝑗 ) ∈ TF, 𝑗 = 1, . . . 𝑛

˜̄𝑥← (˜̄𝑥1, ˜̄𝑥2, . . . ˜̄𝑥𝑛) ∈ (TF)𝑛

Step 5 End

Thus, we refer the computed output by the previous algorithm as a compromise fuzzy Pareto solution for
(FFMLP). To prove that such output is really a fuzzy Pareto solution for (FFMLP), we provide the following
result.

Theorem 4. Consider (FFMLP) in the minimization (maximization) case. If Algotithm 1 (2) in Table 1
(Tab. 2) is applied to (FFMLP) , and 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) with 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗 ) ∈ TF, 𝑗 = 1, . . . , 𝑛, is an

output of such application, then 𝑥̃ is a fuzzy Pareto solution of (FFMLP).

Proof. If 𝑥̃ = (𝑥̃1, . . . , 𝑥̃𝑛) with 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥
+
𝑗 ) ∈ TF, 𝑗 = 1, . . . , 𝑛, is an output in the application of Algorithm

1 (2), it means that 𝑥 = (𝑥−1 , 𝑥̂1, 𝑥
+
1 , . . . , 𝑥−𝑛 , 𝑥̂𝑛, 𝑥+

𝑛 ) ∈ R3𝑛 is a feasible solution for (CMLP) obtained by the
Tind-Wiecek lexicographic Tchebycheff method, and then, by Tind and Wiecek [44], it follows that 𝑥 is a Pareto
solution for (MCLP). Therefore, by Theorem 2, we have that 𝑥̃𝑗 = (𝑥−𝑗 , 𝑥̂𝑗 , 𝑥

+
𝑗 ) ∈ TF, 𝑗 = 1, . . . , 𝑛, is a fuzzy

Pareto solution of (FFMLP), and the proof is complete. �

5. Numerical application

To illustrate the previous algorithm to compute a compromise fuzzy Pareto solution, let us consider the
following fully fuzzy multiobjective programming problem, from another used by Khan et al. [29, 30], also by
Arana-Jiménez [4], where two fuzzy objective functions have been included.

(FFMLP1) Max 𝑓(𝑥̃1, 𝑥̃2, 𝑥̃3) =
(︂(︂

7
5
, 4,

43
7

)︂
𝑥̃1 + (5, 7, 12)𝑥̃2 +

(︂
39
4

, 11,
33
2

)︂
𝑥̃3,
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Table 3. Application of Algorithm 2.

Steps Outputs from Algorithm 2 (maximization case)

Step 1 (𝑓𝑢𝑡
𝑖𝑠 ) = (2.457143, 19.354839, 36.562500, 2.400000, 14.516129, 16.666667)

Step 2 𝜆* = 3.022473

Step 3 𝑥̄ = (0.0000000, 1.6149387, 2.2223681, 0.0000000, 0.3650752, 0.3650752,
0.4000000, 0.4761280, 0.4761280)

Step 4 ˜̄𝑥1 = (0.0000000, 1.6149387, 2.2223681) ∈ TF

˜̄𝑥2 = (0.0000000, 0.3650752, 0.3650752) ∈ TF

˜̄𝑥3 = (0.4000000, 0.4761280, 0.4761280) ∈ TF

(3, 4, 6)𝑥̃1 +
(︂

10
3

, 5, 9
)︂

𝑥̃2 + (4, 5, 10)𝑥̃3

)︂
s.t. (2, 5, 8)𝑥̃1 +

(︂
3,

41
6

, 10
)︂

𝑥̃2 +
(︂

5,
31
3

, 18
)︂

𝑥̃3
⪯−

(︂
6,

50
3

, 30
)︂

,(︂
4

32
3

, 12
)︂

𝑥̃1 +
(︂

5,
73
6

, 20
)︂

𝑥̃2 +
(︂

7,
105
6

, 30
)︂

𝑥̃3
⪯− (10, 30, 50),

(3, 5, 7)𝑥̃1 + (5, 15, 20)𝑥̃2 + (5, 10, 15)𝑥̃3
⪯−

(︂
2,

145
6

, 30
)︂

,

𝑥̃1, 𝑥̃2, 𝑥̃3
⪰− 0.

We consider that the decision maker is interested in a compromise fuzzy Pareto solution, instead of a set of solu-
tions. Then, firstly it is obtained its related crisp multiobjective problem, where 𝑥 = (𝑥−1 , 𝑥̂1, 𝑥

+
1 , . . . , 𝑥−3 , 𝑥̂3, 𝑥

+
3 ),

and 𝑓 = (𝑓11, 𝑓12, 𝑓13, 𝑓21, 𝑓22, 𝑓23) : R9 → R6 a vector-valued function, with 𝑓11(𝑥) = 7
5𝑥−1 + 5𝑥−2 + 39

4 𝑥−3 ,
𝑓12(𝑥) = 4𝑥̂1 +7𝑥̂2 +11𝑥̂3, 𝑓13(𝑥) = 43

7 𝑥+
1 +12𝑥+

2 + 33
2 𝑥+

3 , 𝑓21(𝑥) = 3𝑥−1 + 10
3 𝑥−2 +4𝑥−3 , 𝑓22(𝑥) = 4𝑥̂1 +5𝑥̂2 +5𝑥̂3,

and 𝑓23(𝑥) = 6𝑥+
1 +9𝑥+

2 +10𝑥+
3 . Then, it is applied Algorithm 2, in the maximization case, and then the results

are obtained, step by step, given in Table 3.
Note that in Step 1 in Table 3, the obtained vector with utopia scores can be interpreted as two fuzzy utopia

scores (2.457143, 19.354839, 36.562500) and (2.400000, 14.516129, 16.666667). By the remaining steps, the fuzzy
value of the fuzzy-valued objective function 𝑓 at (˜̄𝑥1, ˜̄𝑥2, ˜̄𝑥3) is (˜̄𝑧1, ˜̄𝑧2) = 𝑓(˜̄𝑥1, ˜̄𝑥2, ˜̄𝑥3), with

˜̄𝑧1 = (2.457143, 16.343755, 33.540027) ∈ TF,

˜̄𝑧2 = (2.40000, 11.49366, 15.47613) ∈ TF.

Note that the two fuzzy utopia scores are less than or equal to (in the fuzzy sense ⪯− ) the corresponding ˜̄𝑧1

and ˜̄𝑧2. Furthermore, each lower extreme of the two fuzzy utopia scores coincides with the corresponding lower
extreme of ˜̄𝑧1 and ˜̄𝑧2, respectively. Then, the compromise fuzzy Pareto solution for the fully fuzzy multiobjective
programming problem is given by (˜̄𝑥1, ˜̄𝑥2, ˜̄𝑥3), and the fuzzy value of the fuzzy-valued objective function is
(˜̄𝑧1, ˜̄𝑧2).

The computations have been made in R (see https://www.r-project.org), and using the lpSolve package
for solving Linear Programs.

6. Conclusions

An equivalence between a (FFMLP) problem and a crisp multiobjective lineal programming problem is
established, without loss of information and without ranking functions. As results, methods to obtain fuzzy

https://www.r-project.org
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Pareto solutions for (FFMLP) has been provided; in particular, a compromise fuzzy Pareto solution is obtained
by an algorithm which considers an adaptation of lexicographic weighted Tchebycheff method.

As future works, the techniques presented will be extended to generate fuzzy Pareto solutions in interval
and fuzzy fractional programming with applications to economy, among others, as well as to inverse Data
Envelopment Analysis with fuzzy data in inputs and outputs.
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