A class of new search directions for full-NT step feasible interior point method in semidefinite optimization
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 3955-3971

In this paper, based on Darvay et al.’s strategy for linear optimization (LO) (Z. Darvay and P.R. Takács, Optim. Lett. 12 (2018) 1099–1116.), we extend Kheirfam et al.’s feasible primal-dual path-following interior point algorithm for LO (B. Kheirfam and A. Nasrollahi, Asian-Eur. J. Math. 1 (2020) 2050014.) to semidefinite optimization (SDO) problems in order to define a class of new search directions. The algorithm uses only full Nesterov-Todd (NT) step at each iteration to find an ε-approximated solution to SDO. Polynomial complexity of the proposed algorithm is established which is as good as the LO analogue. Finally, we present some numerical results to prove the efficiency of the proposed algorithm.

DOI : 10.1051/ro/2022192
Classification : 90C51, 90C25, 90C22
Keywords: Semidefinite optimization, interior point method, full Nesterov-Todd step, new search directions, algebraic equivalent transformation, polynomial complexity
@article{RO_2022__56_6_3955_0,
     author = {Guerra, Loubna},
     title = {A class of new search directions for {full-NT} step feasible interior point method in semidefinite optimization},
     journal = {RAIRO. Operations Research},
     pages = {3955--3971},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022192},
     mrnumber = {4513269},
     zbl = {1539.90137},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022192/}
}
TY  - JOUR
AU  - Guerra, Loubna
TI  - A class of new search directions for full-NT step feasible interior point method in semidefinite optimization
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3955
EP  - 3971
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022192/
DO  - 10.1051/ro/2022192
LA  - en
ID  - RO_2022__56_6_3955_0
ER  - 
%0 Journal Article
%A Guerra, Loubna
%T A class of new search directions for full-NT step feasible interior point method in semidefinite optimization
%J RAIRO. Operations Research
%D 2022
%P 3955-3971
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022192/
%R 10.1051/ro/2022192
%G en
%F RO_2022__56_6_3955_0
Guerra, Loubna. A class of new search directions for full-NT step feasible interior point method in semidefinite optimization. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 3955-3971. doi: 10.1051/ro/2022192

[1] M. Achache, A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006) 97–110. | MR | Zbl | DOI

[2] M. Achache and L. Guerra, A full Nesterov-Todd-step feasible primal-dual interior point algorithm for convex quadratic semi-definite optimization. Appl. Math. Comput. 231 (2014) 581–590. | MR | Zbl

[3] F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995) 13–51. | MR | Zbl | DOI

[4] Z. Darvay, New interior-point algorithms in linear optimization. Adv. Model. Optim. 5 (2003) 51–92. | MR | Zbl

[5] Z. Darvay and P. R. Takács, New method for determining search directions for interior-point algorithms in linear optimization. Optim. Lett. 12 (2018) 1099–1116. | MR | Zbl | DOI

[6] Zs Darvay, I. M. Papp and P. R. Takács, Complexity analysis of a full-Newton step interior-point method for linear optimization. Period. Math. Hung. 73 (2016) 27–42. | MR | Zbl | DOI

[7] E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002). | MR | Zbl | DOI

[8] M. Halicka, E. De Klerk and C. Roos, On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12 (2002) 1090–1099. | MR | Zbl | DOI

[9] G. Gu, M. Zangiabadi and C. Roos, Full Nesterov-Todd step infeasible interior- point method for symmetric optimization. Eur. J. Oper. Res. 214 (2011) 473–484. | MR | Zbl | DOI

[10] L. Guerra and M. Achache, A parametric kernel function generating the best known iteration bound for large-update methods for CQSDO. Stat. Optim. Inf. Comput. 8 (2020) 876–889. | MR | DOI

[11] B. Kheirfam, New complexity analysis of a full Nesterov-Todd step interior-point method for semidefinite optimization. Asian-Eur. J. Math. 3 (2017) 1750070. | MR | Zbl | DOI

[12] B. Kheirfam and A. Nasrollahi, An extension for identifying search directions for interior-point methods in linear optimization. Asian-Eur. J. Math. 1 (2020) 2050014. | MR | Zbl | DOI

[13] M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86–125. | MR | Zbl | DOI

[14] H. Mansouri and C. Roos, A new full Newton-step O ( n ) infeasible interior-point algorithm for semidefinite optimization. Numer. Algorithms 52 (2009) 225–255. | MR | Zbl | DOI

[15] Y. E. Nesterov and A. S. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, PA (1994). | MR | Zbl | DOI

[16] C. Roos, T. Terlaky and J. Ph. Vial, Theory and algorithms for linear optimization. An interior point approach. John-Wiley, Sons, Chichester, UK (1997). | MR | Zbl

[17] M. J. Todd, K. C. Toh and R. H. Tütüncü, On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optim. 8 (1998) 769–796. | MR | Zbl | DOI

[18] G. Q. Wang and Y. Q. Bai, A new primal-dual path-following interior point algorithm for semidefinite programming. J. Math. Anal. Appl. 353 (2009) 339–349. | MR | Zbl | DOI

[19] G. Q. Wang and Y. Q. Bai, A primal-dual path-following interior-point algorithm for second-order cone optimization with full Nesterov-Todd step. Appl. Math. Comput. 215 (2009) 1047–1061. | MR | Zbl

[20] G. Q. Wang and Y. Q. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization. J. Optim. Theory Appl. 154 (2012) 966–985. | MR | Zbl | DOI

[21] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming, Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2000). | MR | Zbl | DOI

[22] M. Zangiabadi, G. Gu and C. Roos, Full Nesterov-Todd step primal-dual interior- point mathods for second-order cone optimization. J. Optim. Theory Appl. 158 (2013) 816–858. | MR | Zbl | DOI

Cité par Sources :