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A CLASS OF NEW SEARCH DIRECTIONS FOR FULL-NT STEP FEASIBLE
INTERIOR POINT METHOD IN SEMIDEFINITE OPTIMIZATION

LoOUBNA GUERRA*

Abstract. In this paper, based on Darvay et al.’s strategy for linear optimization (LO) (Z. Darvay
and P.R. Takdcs, Optim. Lett. 12 (2018) 1099-1116.), we extend Kheirfam et al.’s feasible primal-dual
path-following interior point algorithm for LO (B. Kheirfam and A. Nasrollahi, Asian-Eur. J. Math.
1 (2020) 2050014.) to semidefinite optimization (SDO) problems in order to define a class of new
search directions. The algorithm uses only full Nesterov-Todd (NT) step at each iteration to find an
e-approximated solution to SDO. Polynomial complexity of the proposed algorithm is established which
is as good as the LO analogue. Finally, we present some numerical results to prove the efficiency of the
proposed algorithm.
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1. INTRODUCTION

Semidefinite optimization (SDO) problems are convex optimization problems, including linear optimization
(LO), which minimize a linear function with the matrix variable over the intersection of an affine set and the
cone of positive semidefinite matrices. SDO problems have a lot of significant applications in continuous and
combinatorial optimization (see, e.g., [3,21]).

In the last decade, SDO has become a very active research area in mathematical programming because
of the extension of the most algorithms for LO to the SDO case. Several primal-dual interior-point methods
(IPMs) suggested for LO have been successfully extended to SDO [7,11,14,18], convex quadratic semidefinite
optimization (CQSDO) [2,10] and other optimization problems [9,19,20,22] due to their polynomial complexity
and practical efficiency. The first primal-dual feasible IPM with a full-Newton step for LO was proposed by
Roos et al. [16]. Later on, De Klerk [7], Achache and Guerra [2] extended Roos et al.’s algorithm for LO to
SDO and CQSDO by using the full Nesterov-Todd (NT) direction as a search direction, respectively. Finding
the search directions plays a crucial role in IPMs. In 2003, Darvay [4] introduced a new strategy for defining
search directions for LO problems. The strategy is based on an algebraic equivalent transformation (AET) of
the standard centering equations of the central path w(%) = 1(e) where ¥(t) = v/t. Achache [1], Wang and Bai
[18,19], extended Darvay’s algorithm for LO to convex quadratic optimization (CQO), SDO and second-order
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cone optimization (SOCO), respectively. In 2016, Darvay et al. [6] developed a new full-Newton step feasible IPM
for LO based on a new reformulation of the standard centering equations of the central path with 1 (¢) =t — /2.
Kheirfam [11], generalized this method for SDO and derived the currently best-known iteration bound for SDO
problems. In 2018, Darvay and Takécs [5] designed a feasible primal-dual interior point algorithm for LO. Their

algorithm is based on a new reformulation of the nonlinear equations of the central path ( %z) = w((%)%)

where ¢ (t) = t2, for t > f They established that the iteration bound of it is O (\f log 2 ) Recently, Kheirfam
et al. [12] extended this study to case ¢(t) = t¥ with ¢ > % and p > 2 to determine a class of the search
directions in LO and proved that the suggested approach has the same complexity bound obtained by Darvay
et al. [5].

Motivated by the mentioned works, we propose a new feasible primal-dual path-following interior point
algorithm for SDO based on a new transformation to define a class of new search directions. We adopt the basic
analysis used in [12] for the SDO case. The iteration bound for the algorithm with the small-update method is
as good as the bound for the LO case [5,12]. Furthermore, our analysis is relatively simple and straightforward
to the LO analogue.

The outline of the paper is as follows. In Section 2, the SDO problem and the central path are presented. In
Section 3, we extend Darvay’s new technique for LO to SDO and derive a class of new search directions for SDO
problems based on the AET with ¢(t) = ¢P for t > % and p > 2. In Section 4, we present a new primal-dual
interior point algorithm for SDO. In Section 5, the polynomial complexity result is established where we give
the detailed proofs of it. Some numerical results are provided in Section 6. Finally, a conclusion is stated in
Section 7.

The following notations are used throughout the paper.R™ denotes the space of vectors with n components.
S™ denotes the space of real symmetric matrices of order n and S} (S}, ) denotes the cone of n x n symmetric
positive definite (positive semidefinite) matrices. Furthermore, X > 0 (X > 0) means that X € S (X € ST ).
For any matrix A, \;(A) denote the i!" eigenvalues of A with Apin(A) the smallest one and det A denotes
its determinant whereas Tr(A) = Z?zl iy = Z?zl A; denotes its trace where a;; is the diagonal elements of

A, |||z denote the Frobenius norm and the symbol A e B denotes the trace inner-product in S"defined by
Ae B = Tr(AB) = Z?jzl A;;B;;. The symmetric positive definite square root of any symmetric positive

definite matrix X is denoted by X'/2. For f(z), g(z) : RT — R",, f(z) = O(g(x)) if f(z) < kg(z) for some
positive constant k. Finally, the notation A ~ B < A = SBS~! for some invertible matrix S, means the
similarity between the two matrices A, B € R"*™ and the identity matrix is denoted by 1.

2. THE CENTRAL PATH
The standard primal form of semidefinite optimization (SDO) problems is as follows
(P) n}}n{CoX| AjeX =b,i=1,...,m, X =0},
and its Lagrange dual problem

(D) max{bTy| Z yAi+Z=C, Z =0,y e R"},

where C, A; € S” and b € R™.
Throughout the paper, we make the following assumptions on (P) and (D).

e Independence condition. The matrices A;,7 = 1,...,m are linearly independent.
e Interior point condition (IPC). There exists a triple (X, 3°, Z°) such that:

Ao X0 =b;i=1,....m > fA+2°=C, X°+0,2° -0

i=1
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If the IPC holds, it is well known that finding an optimal solutions of (P) and (D) is equivalent to solving the
following system:

Ao X —bi=1,...,mX =0,
=1
XZ =0.

The basic idea of primal-dual IPMs is to replace the third equation XZ = 0 in the system (1), the so-called
complementarity condition for (P) and (D), by the parameterized equation XZ = ul (u > 0). Thus we consider

Ao X =bii=1,...,mX =0,

yidi+2=0C,7 -0, )
=1
Xz = ul.

Since the IPC holds and the A; are linearly independent, the parameterized system (2), has a unique solution
(X (w),y(p), Z(w)) for any p > 0 [13,15]. The set of all such solutions defines the central-path of (P) and (D).
If u — 0, then the limit of the central-path exists and since the limit satisfies the complementarity condition,
the limit yields a primal-dual optimal solutions for (P) and (D) [8].

3. A CLASS OF NEW SEARCH DIRECTIONS BASED ON DARVAY ET AL.’S TECHNIQUE
In [5], Darvay and Takdcs proposed a new reformulation to obtain a new search directions for LO by replacing
the standard centering equation xz = pe with v (%) =1 (ﬁ) , where 1(.) is the continuously differentiable
vector function induced by function (t) on (k,00) such that 2t (£2) — ¢’ (t) > 0, for all t > k (0 < K < 1).
Inspired by [5], we replace the standard centering equation XZ = pul by ¢ (%) = (()ZZ) é), then the
system (2) can be written as:

Ao X =bii=1,...,mX >0,
S yAi+Z=C,Z =0,
= (3)

1
Xz - Xz)*?
o () = ().
Applying Newton method’s on system (3), we obtain the following system for the search directions AX, Ay and
AZ

A; e AX =0,i=1,...,m,

m

& 1 @)
XZ | XAZ+AXZHAXAZY _ XZ | XAZ4AXZ+AXAZ)?

¢07+ 2 )_w((u+ R ))'

Applying Lemma 2.5 in [18], the third equation of the last system can be written as

o)+ () (2522) o ((2)°) 1 ()0 ((2)°) (25229) =0

which equivalent to

sxzxsz=ud () -1 ()7 o (32)°) e (32)) o (o))
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Then we consider the following system

A; e AX =0,i=1,...,m,

i=1 (5)

axxazz - (9)-4 ()76 () [+ ((9)°) o ()] 2~

to obtain search directions (AX, Ay, AZ). It is obvious that AZ is symmetric due to the second equation in (5)
but AX may be not symmetric. Many researchers have proposed several methods for symmetrizing the third
equation in (5) such that the resulting new system has a unique symmetric solution.

In this paper, we use the Nesterov-Todd symmetrization scheme [2,7,10,11,17-19,21], which defines the so-called
NT-direction. Let us define the matrix

1

j e (X%ZX%)7 Xs=—g3 (Z%XZ%>§ 7%

We replace the term XAZZ~! in the third equation of (5) by PAZPT. Then the system (5) becomes

A; o AX =0,i=1,...,m,

™ AyiA; + AZ =0,
P (6)

ax+pazet = (32) -1 ()7 v () ) [ (42 e (39) 2

Furthermore, we define D = P%, where Pz denotes the symmetric square roote of P. The matrix D can be
used to scale X and Z to the same matrix V as follows

1 1
V:=—D'XD'=_—_DZD. (7)
Vi Vi

Note that both matrices D and V are symmetric and positive definite. It is easy to verify from (7) that
V2= inlXZD ie., V2 ~ %XZ. In addition, the scaling directions Dx and Dy are:

1 1
Dx : = —=D'AXD™' Dy:=-—DAZD, (8)
Vi VH
- 1
AZ:—DAzD,Zzl,,m

N

Then it follows from (6) that the scaled NT search directions (Dx, Ay, Dz) are defined by the following system

Ai.DX :0,7::1,...777’7,,
> (Ay)iA; + Dz =0, (9)
i=1

x + Dz = Py.

Since the A; are linearly independent so the A;, then the system (9) has a unique solution Dx, Ay, and Dy
with Dx and Dy are symmetric matrices, and

Py = [QV (Dw' (vV2) D*1> - (qu’(V)D*l)} " 2 (Dv(V)DY) — 2 (DU(VADY)] .

Darvay et al. [5] developed a full Newton step primal-dual path-following IPM for LO. They also established
that their approach solves the LO problem in polynomial time and has O(y/nL)-iteration complexity bound.
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Their analysis is based on the function (t) = t? case, and Kheirfam [12] extended this study to the case
P(t) =P for t > % and p > 2 to derive a class of new search directions for LO problems.

In this paper, we extend the proposed strategy in [5] with ¢(t) = t¥ for ¢ > % and p > 2 to the SDO case,
this yields

2 1
Py = =(V-=VP)Y VP — )71 with Apin(V) > — and p > 2. 10
v = ) ) (V)= 5 mdpz (10)
We begin by recalling the following technical lemma.
Lemma 3.1. Let Py be defined by (10). Then
P2 P2
IfTV <V?4+VPy j]+((2p71)271)7‘/~
Proof. From (10), we have
2
V24 VP, =V24 5(V2 — VPP (2P — )7L,
2
=V2QVP —D)QVP - 1)+ Z(V2 = VP (2vP — 1)
p

_1 [2pV P2 — pV2 4 2V2 — 2VPH2] (2P — 1)1,
[(2pVP —pI) + (2p — 2)VPF2 — (p = 2)V2 — 2pVP + pI] VP — 1),

1
+ , [(2p —2)VPP2 — (p—2)V2 — 2pVP + pI| (2VP — 1) 1.

N R

Due to spectral theorem for symmetric matrices [18], since V' € S?, we obtain
V =Q 'diag(M(V),.... \(V)Q,

where @ is any orthonormal matrix (Q7 = Q') that diagonalizes V. Then

V2+VPy — 1 =Q 'diag(p(M(V)), ..., oM (V)))Q, (11)
_ Cp2APA(V)—(r-2)N2 (V) —2pN (V) + -
where o(\;(V)) = L p(2/’\%(v)_1) P L ofori=1,...,n.

Let us consider f(t) = (2p — 2)tP™2 — (p — 2)t> — 2pt? + p, for all t > % and p > 2. One easily verify that

f/(1) =0 and f”(1) = 6p? — 4p > 0. Hence, f(t) > f(1) =0 for all ¢t € R. From this, together with 2t? — 1 > 0
2

for t > % and (11), it follows that 0 < V2 + V Py — I. In addition, since PTV = 0, we obtain for Ayin(V) > —=

s
andp>2, -0 V24 VP,
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To prove the second inequality, we consider the following function

2p — 2)tP+2 — (p — 2)t2 — 2ptP 1
(2p ) (p ) Pt D forall t > — and p > 2,

g(t) =

p(2tr — 1) ’ V2

(1 —-1)2((2p — 2)t? +2(2p — 2)tP +2(2p — 3)P 2 4 ...+ 2pt + p)
B p(2tP — 1)

p(2tp — D+ 2+ 83+ .+ tP)?

p(2t1’ —1)(t + 12 413 + ...+ tP)2’

t — Pl p (2tP —1)((2p — 2)tP + 2(2p — 2)tP~1 +2(2p — 3)tP~2 + ... + 2pt + D)

p(2tP — 1) (t+12+t3 4 ... +tP)? ’
(1= L N 2p(2p — 2)tP (1P 4+ 2771 + 3P 2 4 . £ 1)
— \p2tr—1) ’

(t+12 413 + ..+ 1P)2
t— Pl 2 (427 4 24201 L 34202 P
p(2tr — 1) (t+12 413 + ..+ 1P)2

<m0 ) <@y (Y

)

Substituting this bound into (11), we obtain

_ bl 2 ot )
V2 VP —T = ((2p—1)* = 1)Q diag (MV A <V)> ’_”’<>\2(‘2//\)(>\n+ (v>> o

p2A (V) - 1) 2An(V) = 1)
P2
=(2p-1)*-1
((2p 1) =177,
where the last equality follows from the fact that }1—‘2’ > 0. This completes the proof. (]

For the analysis of the algorithm, we define a norm-based proximity measure §(X, Z; ) as follows:

1 1
0:=0(X,Zyp) = 5 | Pvllp = » [(V = vrEheve — D7,

One can easily check that
X, Zyu) =0V =I1cXZ=ul.

Hence, 0 is a distance which measure the closeness of primal-dual points (X, y, Z) to the central path.

4. THE ALGORITHM

A primal-dual path following interior point algorithm based on new search directions for SDO is given in
Figure 1.

5. ANALYSIS OF THE ALGORITHM

In this section, we will show that the proposed algorithm can solve the SDO in polynomial time.
To simplify the analysis of the Algorithm 4, we introduce Qv = Dx — D . Furthermore, from the third equation
of (9), it follows that

Py + Qv _Pv—QV _P‘%—Q%/_DxDz—‘rDzDX
— Dz = Dxz = = :

Dy = Vo xV
X T 2 4 2

(13)
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Input:
An accuracy parameter € > 0;
A fixed barrier update parameter 0 < 6 < 1 (default 6 = ﬁ),

A threshold parameter 0 < 7 < 1 (default 7 = m),
A strictly feasible point (X°, 4%, Z%) and p° = X+LZO such that
)\min ( XOZO) > p%/i, 5(XO, ZO,,LLO) S T,

o

begin

X=X%y:=y% Z2:=2°% p=p%

While X ¢ Z > ¢ do

begin

solve the system (9) and use (8) to obtain (AX, Ay, AZ)
update X := X +AX, y, =y+ Ay, Z, =72+ AZ,
pry o= (1 = O)p;

end

end

FIGURE 1. Algorithm 4.

Due to the orthogonality of the matrices Dx and Dy we obtain
1Pvlp = 1Qvllp = 26(X, Z; 1) (14)
We start first by stating the following technical lemmas, that will be used later. Let 0 < o < 1.
Lemma 5.1. [7] Let X(a) :== X + aAX, Z(a) := Z + aAZ. If one has
det(X()Z(a)) >0,V0<a<a
then X (@) = 0 and Z(a@) > 0.

Lemma 5.2. [7] Let Q € R™ ™, be symmetric (Q = Q") and M € R™ " be skew-symmetric (M = —M " ). One
has det(Q + M) > 0 if @ > 0. Moreover, if \;(Q + M) €R fori=1,...,n, then

O < Amln(Q) S Al‘ﬂin(cg + M) S AmaX(Q + M) S Amax(C?)'

The next lemma shows the strict feasibility of a full NT-step under the condition § < 1.

Lemma 5.3. Let 6 < 1 and assume that Apin (V) > 12, then the full NT-step is strictly feasible.

-
Proof. Let X(a) = (X + aAX), Z(a) = (Z 4+ aAZ) with 0 < o < 1. From (7) and (8), it follows that
X(a)Z(a) = XZ + a(AXZ + XAZ) + o> AXAZ,
=puD [V?+a(DxV +VDyz)+a’DxDz] D7,
~u[V?+a(DxV +VDz)+a’DxDy],
and which can be written as
X(a)Z(a) ~ B(a) + M () (15)

where 1
M(a) = pa|DxV —VDx + §Q(DXDZ = DzDx)],
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is skew-symmetric. Then by Lemma 5.2, it follows that det(X («)Z(a)) > 0, if the matrix

B(a) = p[V*+aV(Dz + Dx) +a’Dxz],
=pu[V?+aVPy +a’Dxy],

is positive definite. Now, in view of (13) and Lemma 3.1, B(«) can be written as:

P%——Q"‘v}

Bla)=p {V2 +aV Py + a? 1

= {(1 —a)V* 4+ a(VE+VPy) + M] :

4
P2 P2_ 2
1-a)V?+all--Y +a2V7QV,
4 4
P2 2
:(1—a)V2+a<I (1-a)-L-a Q4V>
Then, B(a) = 0if & <1 and
P2 P? 2 Py|? p
(1—a)——aQV <(l-a)||Z| +a Qy S(l—a)” V‘|F+QHQV||F =52 <,
1 1, 1 1 1

where the last equality is due to (14). In addition, since X(0) > 0 and Z(0) > 0, Lemma 5.1, implies that
X (1) = 0 and Z(1) > 0. This completes the proof. O

For simplicity, we may write X, = X(1) and Zy = Z(1), then
pVEr~ X Zy.

The following lemma gives a lower bound for the smallest eigenvalue of Vf, denoted by )\min(Vf), after a full
NT-step.

Lemma 5.4. Let § < 1 then we have
)\min(vf) Z (1 - 52)7

where Amin(V2) is the smallest eigenvalue of V2.

Proof. From (15), in Lemma 5.3, letting o« = 1, we get

P2 _ N2
pVi~ Xy Zy ~B(1)+M(1) ~ u(V2+VPy)+ u% + M(1).

It follows that

2 2 Py QV
Using Lemmas 3.1, 5.2 and the skew-symmetric of M (1), it implies that:

2 2 2 2

U2 S _&>_ &>_& >_||QV||F:_2.
Amin(VE) 2 Amin(1 1 ) > 1 — Amax < 1) 2 1 2 >1 — 1—-9¢

Where the last equality is follows from (14). This completes the proof. O

The next result shows the quadratic convergence of the proximity.
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Lemma 5.5. If § :=§(X, Z;pn) < /1 — % and assume that Amin (V) > —=. Then Amin (Vi)

1
7 >% and

B , (1-02)5 +(1-6)" % + ...+ (1-62)2
A ) S T (-9

Proof. Let 6 < /1 — ﬁ and Apin (V) > p%/i Then by Lemma 5.4, we deduce that

/ 1
Amin(Vi) > V1 —62 > [1— 1— = 77
4p

which implies that Ay, (Vi) > P%/i Since

(2p — 1) +1)8%

Vi VP = (P vET V(T - V),

we have

po(X 1, Zysp) = (Ve = VI @VE = 1)

b

F

)

F
(VE4VP 4 V) I+ V) @V — 1) Y1 - vf)HF :

(Vi = VI + V)T + Vi) v - D)7

i=1

_ (3o (v 02 DIV (WL AN
A+ MV LV —1)

n [ (V) + XV + L+ N(Vy) & 2z
<r?—af(( (ESWIAC W )(ZO—MVM) :

OuminVE) 4 Din (V) A Min Vi) 17 g2
(L4 Anin (Ve)) (2Amin(VF) — 1) e

where the last equality follows from the fact that the function f(t) = Lt .

= W is decreasing on t > By
using Lemma 5.4, we obtain

F\’f

(1= 4+(1-6)= +.+(1-
0 NVARIT) IS
K2 = D+ (1— )] )

%
1=V ,- (16)
Now, we prove that
1=V, < ((2p—1)* +1)5°
Since X (1)Z(1) ~ pV? then by Lemmas 5.3, 3.1 and (13), we deduce that

1
VZ~V24+VPy+Dxy+ —M(1)7

< T+ ((2p—1)> —1)%2+112 Q4V+ ~M(1),

_ Py
—I+(2p—1)24 V+MM()
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consequently
Pz Q? 1
2 2y v
—I=<(2p—-1)"—— =+ —M(1).
VE-1=@p- 1l - S )
By using the Frobenius norm, we obtain
s P2 Q3 1
2 v v
|[I-VE|, < H(2p 1)? Tt pM(l) o
P2 2
1
<[[~er- 02|+ % a)
4 F
p2
<(2p-1)? 7v HQV
PvH Qv |17
S@ -1
= ((2p—1)* + 1)6% (17)

Where the last equality is due to (14) and the third inequality becomes from the following inequality

9o, (%) (8- o).

o evy L e 1 Qv 1
—tr (4V> +4VMMT(1)+HMT(1)4V—MQM(1)MT(1)]7

2
()

Here, the inequality is due to QV SMT(1)+ iM ( I)QT%’ is skew-symmetric and M (1)MT (1) is positive semidef-
inite. Substituting (16) into (17) ylelds the result. This completes the proof. O

- [

The next lemma, shows the influence of a full NT-step on the duality gap.
Lemma 5.6. After a full NT-step, we have

Xy o Zs < pln+((2p—1)2 = 1)52). (18)
Proof. From (15) in the proof of Lemma 5.3, we have

1
XyoZy =puTr(VE) =puTr(V2+ VP, + Dxz + ;M(l)),

by skew-symmetry of M (1) and Lemma 3.1, it implies

X, 0Z, =uTr(V2+VPy + Dxz),
2

P
< pTr(I+ ((2p—1)% - DTV + Dxz),

P2
=+ ((2p =17 = 170 () 4 (D),
= u(n+((2p—1)2—1)6*+Dx e Dy).
From the orthogonality of the matrices Dx and D, we get
Xi o Zy < pln+ (20— 1) = 1)5?).
This completes the proof. (I
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In the next lemma, we investigate the effect of a full NT-step on the proximity after an update of the parameter
L.
Lemma 5.7. Let § := 0(X,Z;p) < m,

. 9 1 o V2 ~ X2y
Amin <V+) > 7 where Vi 1= 175 i and

Amin (V) > % and py = (1 — 0)p with 0 < @ < 1. Then

e [ e S
pn(26° —nP)(n + )

6(X+7Z+a/1’+) (0\/>+((2p_ 1)2+1)62)7
with B := 1 — §2 andn =+v1-46.

In addition, if 0 = 5 4f’ then 6( X4, Zy;puq) < m.

Vi
1-6

Proof. From Lemma 5.4 and the hypothesis of this Lemma, it follows that Ay, (V4) > % Hence, V+ =
and since ﬁ > 1 for all 0 < 0 < 1, then we get

1 5 1
/71 —0 min W
Now, to simplify the notation we write n := /1 — 6 and 8 = /1 — §2. In this way, V+ = %V+. Hence, we have

Amin <V+) > (Vi) >

PO(X, Ziiy) = (V4 = V2HEVE - D7

F

(Ve = VEDI+ V)T + V) v -7

(VP + VP V(I + V) @V — 1) (1 - VE)HF :

_ i( MNVEY+ (VP 4+ o+ u(V)(a Ai(VE))>2 2
2N (VE) = 1)1+ X (V) 7

i=1

N

ax A _ IV %3) I
= @X(VE) = 1)(L+ Au(V4) 2( V)
_ Quuin (V) + Ain (V2™ + 4 Amin(V2)) H 4

(2/\min(‘7f) — 1)1+ Amin(V3)) "

n ((/\i(Vf)+Ai(Vf‘1)+...+Ai(V+))><" . )

b

|-

P

where the last equality follows from the fact that the function f(t) = m

is decreasing on t > %

Now, by using Lemma 5.4, one has

1
/\Inin(v-‘r) = ;)\min(v-&-) >

V1-462=

3\%

1
n
which implies that f(¢) < f( %) Hence, we get

R T o

o CE =+ ) (19)

6( X4, Zyipq) <

In*1 = V2] .-

On the other hand, we have
[T = V[l = (|1 =01 = VE| .,
< Olp+ (1= VD)5

<OV ((2p—1)2 +1)6% (20)
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We now combine the results in (19) and (20), and this yields the desired result. To prove the second part, let

us consider the function u(n) = 2 p;&%z_l;;) (:ﬂ ) 8 yfor0<n<1, g> ? and p > 2, which is increasing with

respect to 7. So, u(n) < u(1l). Combining this result with the upper bound of 6(X4, Zy; pu4) yields

e O
pn(267 = 1)(1 +6)

S(Xy, Zaips) < (0v/n+ (20— 1)2 +1)2), (21)

Now, let us define z(83) = % for 6 > {'f’ which is decreasing with respect to 3. From this along

with 8 =+v1-62>,/1— W := ~(p) and the fact that v(p) increasing for p > 2, we get
1
2(8) < 2(7(p)) < z(7(00)) = 2(1) = 3.
Substituting this bound into (21), and using § = ﬁ and 6 < m, gives
§(Xy, Zyspy) < 0vn+ ((2p —1)% +1)52),
(Xt +N+)_2\/1f(\f((17 ) )5%)
<<1+ (2p—1)2+1 ) p?
“\2pt Hp-1)2+p)?) V220 - 1)

1
=)y

for p > 2, which is increasing with respect to p and

— (e=l4p) | @p-1) 41
where h(p) = ( L i L "'2(2 1)2+p)> \/224 1)’

lim h(p) = 1. Consequently,

p——+00

1
2((p—1)*+p)
This completes the proof. (I

6( Xy, Zyspy) <

From Lemma 5.7, we deduce that Algorithm 4 is well defined. The next lemma gives an upper bound for the
number of iterations produced by Algorithm 4.

Lemma 5.8. Let X**! and Z**1 be the (k + 1) — th iterate generated by Algorithm 4, with p := pg. Then

Xk+1 . Zk+1 S €

if
(2p—1)%2—1
n+4+ o s
k> %bg ol + alp=ryry)
€

Proof. In view of (18) in Lemma 5.6, it follows that:

X e 2 < pu(n + (2p — 1) — 1)),
(2p—1)2 -1 )

= e ("* Ay 12 +p)?

with
e = (1= 0)pp—1 = (1 —60)*po
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Hence, we have

XFL o ZEH < (12 9Yrpg <” + 4(((25—_11))224:1?1)2> '

Thus the inequality X**! e Z#+1 < ¢ holds if

2p—-1)2-1 )Se

(1= 0)"so (”* Hp- D7+

Now, taking logarithms, we may write
— 27
klog(l —0) <loge —log (uo (n + %)) ,
and since —log(1 — 6) > 6 for 0 < 6 < 1, then the inequality is satisfied if

(2p—1)2-1
b L [F =)
=508

€

This completes the proof. ([l
For 6 = ﬁ7 we obtain the following theorem.

Theorem 5.9. Let 0 = 21}%. Then Algorithm J requires at most

vn
0 (p"vimos (7))

iterations, if X© = Z° = I. This choice of initial point can be done by the embedding technique [7].

Proof. 1t is a straightforward from Lemma 5.8. This completes the proof. (]

6. NUMERICAL RESULTS

In order to compare the efficiency of the algorithm with the existing methods and to show the influence of the
parameter p on the number of iterations produced by the algorithm, we present some numerical results under
Matlab 8.1 where the implementation is done on a computer with an Intel core 2.3 GHz processor and 4 GB
RAM, for solving some semidefinite optimization problems.

Note that the value of the parameter p may be very large, which leads to a very small value of the parameter
0, see Theorem 5.9. This motivated us to make some chan%es in the implementation of the proposed algorithm.
The initial primal dual point (X°,5°, Z%) with u° = XO+Z is chosen such that the pair is strictly feasible, the
proximity §(X°, Z% %) < 7 and the smallest eigenvalue of the matrix V is greater than a positive constant. At

each iteration, the value of the parameter p was calculated as py = ami“{(XJrZ*l)b“ 1si=n} where 0 < o < 1

and [b is a given lower bound, which in this case is 0.5%, p > 2 and o = 0.2. The technique for determining
the value of the parameter uy ensures that Ay, (V) > % with p > 2, which is signifiant in our case for the
used search direction. Moreover, to guarantee that the iterates remain interior, we use the following strategy:
we compute at each iteration a maximum step size amax such that X 4+ famaxAX = 0 and Z 4 £apmaxAZ = 0
with apmax = min(ax, az) and € € (0,1), where ax and ayz are the primal and the dual feasible step size given

by ax = min, /'y [i], with
I ST (X%AXX%I) <0
g )\i(XTAXXT>

1 Jif A (X_TlAXX%l) >0,
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and az = min?_, a/[i], with
SR B T (Z%IAZZ%I) <0
ror. il Z2 AZZ 2
ol = { > ( ) o
1 it ) (ZTAZZ?) > 0.

To ensure the strict feasibility of the new iterates we used a factor & = 0.95. In our computational study, we
compared our algorithm where ¢ (t) = t?, p > 2 with the variant of interior point algorithms that use the
following AET for solving SDO problems: ¥(t) =t , 1(t) = v/t and ¥(t) = t — v/t (see [7,11,18], respectively)
where the value of [b is i. In all cases, the accuracy parameter had a value e = 10~°. Here, we use the following
notations: ”iter” means the number of iterations performed by the algorithm in order to get an approximate
optimal solution. "CPU” denotes the time (in seconds) necessary to get an approximate optimal solution for
SDO.

Problem 6.1. We consider the SDO problem in [10], where m =3, n =5, b= [-2,2,-2]T,

0100 0 00-220
1200 —1 02102
A;=](0000 1 |,4=]-21-201
000-2-1 20000
0-11-1-2 02102
2 2-1-11 33-31 1
202 1 1 353 1 2
Az=1]-120 1 0|, Cc={-33-11 2
111 -20 111 -3-1
110 0 -2 122 —1-1

We take X° = Z° =T and y° = [1,1,1]T as a feasible starting point. An exact optimal solution for Problem 6.1
18 given by
0.0914 —0.0718 0.0169 0.0649 —0.1583
—0.0718 0.0724 —0.0183 —0.0602 0.1676
X* =1 0.0169 —0.0183 0.0103 —0.0084 —0.0772 | ,
0.0649 —0.0602 —0.0084 0.1481 0.0056
—0.1583 0.1676 —0.0772 0.0056 0.6022

1.4338 0.5754 —0.0295 —0.4043 0.2169
0.5754 1.0965 0.3401 0.2169 —0.1120
Z* =1-0.0295 0.3401 1.1874 0.2169 0.0478
—0.4043 0.2169 0.2169 0.2831 —0.1415
0.2169 —0.1120 0.0478 —0.1415 0.0957

and y* = [0.8585 1.0937 0.7831]T , the optimal value of both problems is equal to —1.0957. We summarize the
obtained numerical results in Table 1 where the parameter p used in the implementation is as follows:

pe{2 3,5 7, 15, 20, 30}.

Problem 6.2. We consider the SDO problem, where n.=2m, b[i]| =2,i=1,...,m and

.4 J=lifi=jandi<m,
Cli, gl = { 0 otherwise,

o Jlifj=k=i or j=k=1i+m,
Ailj, k] = {O otherwise,
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TABLE 1. Number of iterations for Problem 6.1.

tP
P(t) ) t—vt Vit t
2 3 5 7 15 20 30
iter 31 40 65 93 203 272 410 67 61 64

CPU 0.1571 0.1587 0.1789 0.2503 0.2841 0.3422 0.5793 0.2444 0.2388 0.2336

TABLE 2. Number of iterations for Problem 6.2.

P
(m, )\ (1) P t— Vit Vi t
2 3 5 7 10

(5,10) iter 33 43 69 98 141 71 64 68
CPU  0.2163 0.1010 0.1482 0.1877 0.2658 0.1314 0.1649 0.1382

(10,20) iter 35 45 73 102 148 75 67 71
CPU  0.1339 0.1377 0.2022 0.2668 0.3992 0.2070 0.1801 0.1884

(50,100) iter 39 50 80 113 164 83 74 79
CPU 19779 2.5945 3.4456 3.6638 6.0864 3.5441 3.3478 2.4177

(100,200)  iter 40 52 84 118 171 86 7 82
CPU  6.0358 6.2007 9.5844 9.1948 28.0350  12.8844 10.1662  6.8034

(200,400)  iter 42 54 87 123 178 89 80 85

CPU 21.9279 28.2211 47.4171 68.2180 137.2114 61.2352 51.1357 58.8938

we consider the following starting points:

2—~if i=j5=1,...,m,

X%, =< v if i=j=m+1,...,n,
0 otherwise,
L_14f i=4=1,...,m,
7%, 4] = % if i=j=m+1,...,n,
0 otherwise,
and y°li) = =L, i=1,...,m, with v = (4 —/8)/2. An exact optimal solution for Problem 6.2 is given by:

ry?
wrs a2 i=7=1...,m,
X'l g] = {0 othewise,
wrr a_JLlif i=j=m+1,...,n,
Z[i, 5] = {0 othewise,

and y*[i] = =1, i=1,...,m. The optimal value of both problems is equal to —n. We summarize the obtained
numerical results in Table 2 where the parameter p used in the implementation is as follows:

pef2, 3,5, 7, 10}

Comment. Across the numerical results obtained by the algorithm the minimal number of iterations is achieved
by the AET () = t? with p = 2 for different size (m,n).
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7. CONCLUSION

In this work we have extended a primal-dual path-following interior-point method for LO to SDO problems
with full NT-step. Based on the new Darvay’s technique [5], we used the function ¢ (t) = ¥ with p > 2 in order
to determine a class of new search directions. The associated short-step algorithm deserves the best well-known
polynomial complexity, which is the same iteration bound as in the LO case. Moreover, the resulting analysis
is relatively simple and straightforward to the LO analogue in [12]. We also presented some numerical results
to show the efficiency of the proposed method.

Acknowledgements. The author is very grateful and would like to thank the Editor-in-Chief and the anonymous referees
for their useful suggestions which significantly improved the presentation of this paper.
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