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A CLASS OF NEW SEARCH DIRECTIONS FOR FULL-NT STEP FEASIBLE
INTERIOR POINT METHOD IN SEMIDEFINITE OPTIMIZATION

Loubna Guerra*

Abstract. In this paper, based on Darvay et al.’s strategy for linear optimization (LO) (Z. Darvay
and P.R. Takács, Optim. Lett. 12 (2018) 1099–1116.), we extend Kheirfam et al.’s feasible primal-dual
path-following interior point algorithm for LO (B. Kheirfam and A. Nasrollahi, Asian-Eur. J. Math.
1 (2020) 2050014.) to semidefinite optimization (SDO) problems in order to define a class of new
search directions. The algorithm uses only full Nesterov-Todd (NT) step at each iteration to find an
𝜖-approximated solution to SDO. Polynomial complexity of the proposed algorithm is established which
is as good as the LO analogue. Finally, we present some numerical results to prove the efficiency of the
proposed algorithm.
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1. Introduction

Semidefinite optimization (SDO) problems are convex optimization problems, including linear optimization
(LO), which minimize a linear function with the matrix variable over the intersection of an affine set and the
cone of positive semidefinite matrices. SDO problems have a lot of significant applications in continuous and
combinatorial optimization (see, e.g., [3, 21]).

In the last decade, SDO has become a very active research area in mathematical programming because
of the extension of the most algorithms for LO to the SDO case. Several primal-dual interior-point methods
(IPMs) suggested for LO have been successfully extended to SDO [7, 11, 14, 18], convex quadratic semidefinite
optimization (CQSDO) [2,10] and other optimization problems [9,19,20,22] due to their polynomial complexity
and practical efficiency. The first primal-dual feasible IPM with a full-Newton step for LO was proposed by
Roos et al. [16]. Later on, De Klerk [7], Achache and Guerra [2] extended Roos et al.’s algorithm for LO to
SDO and CQSDO by using the full Nesterov-Todd (NT) direction as a search direction, respectively. Finding
the search directions plays a crucial role in IPMs. In 2003, Darvay [4] introduced a new strategy for defining
search directions for LO problems. The strategy is based on an algebraic equivalent transformation (AET) of
the standard centering equations of the central path 𝜓(𝑥𝑧

𝜇 ) = 𝜓(𝑒) where 𝜓(𝑡) =
√
𝑡. Achache [1], Wang and Bai

[18, 19], extended Darvay’s algorithm for LO to convex quadratic optimization (CQO), SDO and second-order
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cone optimization (SOCO), respectively. In 2016, Darvay et al. [6] developed a new full-Newton step feasible IPM
for LO based on a new reformulation of the standard centering equations of the central path with 𝜓(𝑡) = 𝑡−

√
𝑡.

Kheirfam [11], generalized this method for SDO and derived the currently best-known iteration bound for SDO
problems. In 2018, Darvay and Takács [5] designed a feasible primal-dual interior point algorithm for LO. Their
algorithm is based on a new reformulation of the nonlinear equations of the central path 𝜓(𝑥𝑧

𝜇 ) = 𝜓((𝑥𝑧
𝜇 )

1
2 )

where 𝜓(𝑡) = 𝑡2, for 𝑡 > 1√
2
. They established that the iteration bound of it is 𝑂

(︀√
𝑛 log 𝑛

𝜖

)︀
. Recently, Kheirfam

et al. [12] extended this study to case 𝜓(𝑡) = 𝑡𝑝 with 𝑡 > 1
𝑝√2

and 𝑝 ≥ 2 to determine a class of the search
directions in LO and proved that the suggested approach has the same complexity bound obtained by Darvay
et al. [5].

Motivated by the mentioned works, we propose a new feasible primal-dual path-following interior point
algorithm for SDO based on a new transformation to define a class of new search directions. We adopt the basic
analysis used in [12] for the SDO case. The iteration bound for the algorithm with the small-update method is
as good as the bound for the LO case [5,12]. Furthermore, our analysis is relatively simple and straightforward
to the LO analogue.

The outline of the paper is as follows. In Section 2, the SDO problem and the central path are presented. In
Section 3, we extend Darvay’s new technique for LO to SDO and derive a class of new search directions for SDO
problems based on the AET with 𝜓(𝑡) = 𝑡𝑝 for 𝑡 > 1

𝑝√2
and 𝑝 ≥ 2. In Section 4, we present a new primal-dual

interior point algorithm for SDO. In Section 5, the polynomial complexity result is established where we give
the detailed proofs of it. Some numerical results are provided in Section 6. Finally, a conclusion is stated in
Section 7.

The following notations are used throughout the paper.R𝑛 denotes the space of vectors with 𝑛 components.
S𝑛 denotes the space of real symmetric matrices of order 𝑛 and S𝑛

+ (S𝑛
++) denotes the cone of 𝑛× 𝑛 symmetric

positive definite (positive semidefinite) matrices. Furthermore, 𝑋 ⪰ 0 (𝑋 ≻ 0) means that 𝑋 ∈ S𝑛
+ (𝑋 ∈ S𝑛

++).
For any matrix 𝐴, 𝜆𝑖(𝐴) denote the 𝑖𝑡ℎ eigenvalues of 𝐴 with 𝜆min(𝐴) the smallest one and det𝐴 denotes
its determinant whereas 𝑇𝑟(𝐴) =

∑︀𝑛
𝑖=1 𝑎𝑖𝑖 =

∑︀𝑛
𝑖=1 𝜆𝑖 denotes its trace where 𝑎𝑖𝑖 is the diagonal elements of

𝐴, ‖.‖𝐹 denote the Frobenius norm and the symbol 𝐴 ∙ 𝐵 denotes the trace inner-product in S𝑛defined by
𝐴 ∙ 𝐵 = Tr(𝐴𝐵) =

∑︀𝑛
𝑖,𝑗=1𝐴𝑖𝑗𝐵𝑖𝑗 . The symmetric positive definite square root of any symmetric positive

definite matrix 𝑋 is denoted by 𝑋1/2. For 𝑓(𝑥), 𝑔(𝑥) : R𝑛
+ → R𝑛

++, 𝑓(𝑥) = 𝑂(𝑔(𝑥)) if 𝑓(𝑥) ≤ 𝑘𝑔(𝑥) for some
positive constant 𝑘. Finally, the notation 𝐴 ∼ 𝐵 ⇔ 𝐴 = 𝑆𝐵𝑆−1 for some invertible matrix 𝑆, means the
similarity between the two matrices 𝐴,𝐵 ∈ R𝑛×𝑛, and the identity matrix is denoted by 𝐼.

2. The central path

The standard primal form of semidefinite optimization (SDO) problems is as follows

(𝒫) min
𝑋
{𝐶 ∙𝑋 | 𝐴𝑖 ∙𝑋 = 𝑏𝑖, 𝑖 = 1, . . . ,𝑚, 𝑋 ⪰ 0},

and its Lagrange dual problem

(𝒟) max
(𝑦, 𝑍)

{𝑏⊤𝑦 |
∑︁𝑚

𝑖=1
𝑦𝑖𝐴𝑖 + 𝑍 = 𝐶, 𝑍 ⪰ 0, 𝑦 ∈ R𝑚},

where 𝐶, 𝐴𝑖 ∈ S𝑛 and 𝑏 ∈ R𝑚.
Throughout the paper, we make the following assumptions on (𝒫) and (𝒟).

∙ Independence condition. The matrices 𝐴𝑖, 𝑖 = 1, . . . ,𝑚 are linearly independent.
∙ Interior point condition (IPC). There exists a triple (𝑋0, 𝑦0, 𝑍0) such that:

𝐴𝑖 ∙𝑋0 = 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,
𝑚∑︁

𝑖=1

𝑦0
𝑖𝐴𝑖 + 𝑍0 = 𝐶, 𝑋0 ≻ 0, 𝑍0 ≻ 0.
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If the IPC holds, it is well known that finding an optimal solutions of (𝒫) and (𝒟) is equivalent to solving the
following system: ⎧⎪⎨⎪⎩

𝐴𝑖 ∙𝑋 = 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,𝑋 ⪰ 0,
𝑚∑︀

𝑖=1

𝑦𝑖𝐴𝑖 + 𝑍 = 𝐶, 𝑦 ∈ R𝑚, 𝑍 ⪰ 0,

𝑋𝑍 = 0.

(1)

The basic idea of primal-dual IPMs is to replace the third equation 𝑋𝑍 = 0 in the system (1), the so-called
complementarity condition for (𝒫) and (𝒟), by the parameterized equation 𝑋𝑍 = 𝜇𝐼 (𝜇 > 0). Thus we consider⎧⎪⎨⎪⎩

𝐴𝑖 ∙𝑋 = 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,𝑋 ≻ 0,
𝑚∑︀

𝑖=1

𝑦𝑖𝐴𝑖 + 𝑍 = 𝐶,𝑍 ≻ 0,

𝑋𝑍 = 𝜇𝐼.

(2)

Since the IPC holds and the 𝐴𝑖 are linearly independent, the parameterized system (2), has a unique solution
(𝑋(𝜇), 𝑦(𝜇), 𝑍(𝜇)) for any 𝜇 > 0 [13, 15]. The set of all such solutions defines the central-path of (𝒫) and (𝒟).
If 𝜇 → 0, then the limit of the central-path exists and since the limit satisfies the complementarity condition,
the limit yields a primal-dual optimal solutions for (𝒫) and (𝒟) [8].

3. A class of new search directions based on Darvay et al.’s technique

In [5], Darvay and Takács proposed a new reformulation to obtain a new search directions for LO by replacing
the standard centering equation 𝑥𝑧 = 𝜇𝑒 with 𝜓

(︁
𝑥𝑧
𝜇

)︁
= 𝜓

(︁√︁
𝑥𝑧
𝜇

)︁
, where 𝜓(.) is the continuously differentiable

vector function induced by function 𝜓(𝑡) on (𝜅,∞) such that 2𝑡𝜓
′
(𝑡2) − 𝜓

′
(𝑡) > 0, for all 𝑡 > 𝜅 (0 < 𝜅 < 1).

Inspired by [5], we replace the standard centering equation 𝑋𝑍 = 𝜇𝐼 by 𝜓
(︁

𝑋𝑍
𝜇

)︁
= 𝜓

(︂(︁
𝑋𝑍
𝜇

)︁ 1
2
)︂

, then the

system (2) can be written as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴𝑖 ∙𝑋 = 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,𝑋 ≻ 0,
𝑚∑︀

𝑖=1

𝑦𝑖𝐴𝑖 + 𝑍 = 𝐶,𝑍 ≻ 0,

𝜓
(︁

𝑋𝑍
𝜇

)︁
= 𝜓

(︂(︁
𝑋𝑍
𝜇

)︁ 1
2
)︂
.

(3)

Applying Newton method’s on system (3), we obtain the following system for the search directions ∆𝑋,∆𝑦 and
∆𝑍 ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐴𝑖 ∙∆𝑋 = 0, 𝑖 = 1, . . . ,𝑚,
𝑚∑︀

𝑖=1

∆𝑦𝑖𝐴𝑖 + ∆𝑍 = 0,

𝜓
(︁

𝑋𝑍
𝜇 + 𝑋Δ𝑍+Δ𝑋𝑍+Δ𝑋Δ𝑍

𝜇

)︁
= 𝜓

(︂(︁
𝑋𝑍
𝜇 + 𝑋Δ𝑍+Δ𝑋𝑍+Δ𝑋Δ𝑍

𝜇

)︁ 1
2
)︂
.

(4)

Applying Lemma 2.5 in [18], the third equation of the last system can be written as

𝜓
(︁

𝑋𝑍
𝜇

)︁
+ 𝜓

′
(︁

𝑋𝑍
𝜇

)︁(︁
𝑋Δ𝑍+Δ𝑋𝑍

𝜇

)︁
− 𝜓

(︃(︁
𝑋𝑍
𝜇

)︁ 1
2

)︃
− 1

2

(︁
𝑋𝑍
𝜇

)︁−1
2
𝜓
′

(︃(︁
𝑋𝑍
𝜇

)︁ 1
2

)︃(︁
𝑋Δ𝑍+Δ𝑋𝑍

𝜇

)︁
= 0,

which equivalent to

∆𝑋𝑍 +𝑋∆𝑍 = 𝜇[𝜓
′
(︁

𝑋𝑍
𝜇

)︁
− 1

2

(︁
𝑋𝑍
𝜇

)︁−1
2
𝜓
′

(︃(︁
𝑋𝑍
𝜇

)︁ 1
2

)︃
]−1[𝜓

(︃(︁
𝑋𝑍
𝜇

)︁ 1
2

)︃
− 𝜓

(︁
𝑋𝑍
𝜇

)︁
].
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Then we consider the following system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴𝑖 ∙∆𝑋 = 0, 𝑖 = 1, . . . ,𝑚,
𝑚∑︀

𝑖=1

∆𝑦𝑖𝐴𝑖 + ∆𝑍 = 0,

∆𝑋 +𝑋∆𝑍𝑍−1 = 𝜇[𝜓
′
(︁

𝑋𝑍
𝜇

)︁
− 1

2

(︁
𝑋𝑍
𝜇

)︁−1
2
𝜓
′

(︃(︁
𝑋𝑍
𝜇

)︁ 1
2

)︃
]−1

[︃
𝜓

(︃(︁
𝑋𝑍
𝜇

)︁ 1
2

)︃
− 𝜓

(︁
𝑋𝑍
𝜇

)︁]︃
𝑍−1.

(5)

to obtain search directions (∆𝑋, ∆𝑦, ∆𝑍). It is obvious that ∆𝑍 is symmetric due to the second equation in (5)
but ∆𝑋 may be not symmetric. Many researchers have proposed several methods for symmetrizing the third
equation in (5) such that the resulting new system has a unique symmetric solution.
In this paper, we use the Nesterov-Todd symmetrization scheme [2,7,10,11,17–19,21], which defines the so-called
NT-direction. Let us define the matrix

𝑃 = 𝑋
1
2

(︁
𝑋

1
2𝑍𝑋

1
2

)︁− 1
2
𝑋

1
2 = 𝑍−

1
2

(︁
𝑍

1
2𝑋𝑍

1
2

)︁ 1
2
𝑍−

1
2 .

We replace the term 𝑋∆𝑍𝑍−1 in the third equation of (5) by 𝑃∆𝑍𝑃𝑇 . Then the system (5) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴𝑖 ∙∆𝑋 = 0, 𝑖 = 1, . . . ,𝑚,
𝑚∑︀

𝑖=1

∆𝑦𝑖𝐴𝑖 + ∆𝑍 = 0,

∆𝑋 + 𝑃∆𝑍𝑃𝑇 = 𝜇[𝜓
′
(︁

𝑋𝑍
𝜇

)︁
− 1

2

(︁
𝑋𝑍
𝜇

)︁−1
2
𝜓
′
(︂(︁

𝑋𝑍
𝜇

)︁ 1
2
)︂

]−1

[︂
𝜓
(︁

𝑋𝑍
𝜇

)︁ 1
2 − 𝜓

(︁
𝑋𝑍
𝜇

)︁]︂
𝑍−1.

(6)

Furthermore, we define 𝐷 = 𝑃
1
2 , where 𝑃

1
2 denotes the symmetric square roote of 𝑃 . The matrix 𝐷 can be

used to scale 𝑋 and 𝑍 to the same matrix 𝑉 as follows

𝑉 :=
1
√
𝜇
𝐷−1𝑋𝐷−1 =

1
√
𝜇
𝐷𝑍𝐷. (7)

Note that both matrices 𝐷 and 𝑉 are symmetric and positive definite. It is easy to verify from (7) that
𝑉 2 = 1

𝜇𝐷
−1𝑋𝑍𝐷 i.e., 𝑉 2 ∼ 1

𝜇𝑋𝑍. In addition, the scaling directions 𝐷𝑋 and 𝐷𝑍 are:

𝐷𝑋 : =
1
√
𝜇
𝐷−1∆𝑋𝐷−1, 𝐷𝑍 :=

1
√
𝜇
𝐷∆𝑍𝐷, (8)

𝐴𝑖 =
1
√
𝜇
𝐷𝐴𝑖𝐷, 𝑖 = 1, . . . ,𝑚.

Then it follows from (6) that the scaled NT search directions (𝐷𝑋 ,∆𝑦,𝐷𝑍) are defined by the following system⎧⎪⎨⎪⎩
𝐴𝑖 ∙𝐷𝑋 = 0, 𝑖 = 1, . . . ,𝑚,
𝑚∑︀

𝑖=1

(∆𝑦)𝑖𝐴𝑖 +𝐷𝑍 = 0,

𝐷𝑋 +𝐷𝑍 = 𝑃𝑉 .

(9)

Since the 𝐴𝑖 are linearly independent so the 𝐴𝑖, then the system (9) has a unique solution 𝐷𝑋 ,∆𝑦, and 𝐷𝑍

with 𝐷𝑋 and 𝐷𝑍 are symmetric matrices, and

𝑃𝑉 =
[︁
2𝑉
(︁
𝐷𝜓

′ (︀
𝑉 2
)︀
𝐷−1

)︁
−
(︁
𝐷𝜓

′
(𝑉 )𝐷−1

)︁]︁−1 [︀
2
(︀
𝐷𝜓(𝑉 )𝐷−1

)︀
− 2

(︀
𝐷𝜓(𝑉 2)𝐷−1

)︀]︀
.

Darvay et al. [5] developed a full Newton step primal-dual path-following IPM for LO. They also established
that their approach solves the LO problem in polynomial time and has 𝑂(

√
𝑛𝐿)-iteration complexity bound.
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Their analysis is based on the function 𝜓(𝑡) = 𝑡2 case, and Kheirfam [12] extended this study to the case
𝜓(𝑡) = 𝑡𝑝 for 𝑡 > 1

𝑝√2
and 𝑝 ≥ 2 to derive a class of new search directions for LO problems.

In this paper, we extend the proposed strategy in [5] with 𝜓(𝑡) = 𝑡𝑝 for 𝑡 > 1
𝑝√2

and 𝑝 ≥ 2 to the SDO case,
this yields

𝑃𝑉 =
2
𝑝

(𝑉 − 𝑉 𝑝+1)(2𝑉 𝑝 − 𝐼)−1, with 𝜆min(𝑉 ) ≥ 1
𝑝
√

2
and 𝑝 ≥ 2. (10)

We begin by recalling the following technical lemma.

Lemma 3.1. Let 𝑃𝑉 be defined by (10). Then

𝐼 − 𝑃 2
𝑉

4
⪯ 𝑉 2 + 𝑉 𝑃𝑉 ⪯ 𝐼 + ((2𝑝− 1)2 − 1)

𝑃 2
𝑉

4
·

Proof. From (10), we have

𝑉 2 + 𝑉 𝑃𝑉 = 𝑉 2 +
2
𝑝

(𝑉 2 − 𝑉 𝑝+2)(2𝑉 𝑝 − 𝐼)−1,

= 𝑉 2(2𝑉 𝑝 − 𝐼)(2𝑉 𝑝 − 𝐼)−1 +
2
𝑝

(𝑉 2 − 𝑉 𝑝+2)(2𝑉 𝑝 − 𝐼)−1,

=
1
𝑝

[︀
2𝑝𝑉 𝑝+2 − 𝑝𝑉 2 + 2𝑉 2 − 2𝑉 𝑝+2

]︀
(2𝑉 𝑝 − 𝐼)−1,

=
1
𝑝

[︀
(2𝑝𝑉 𝑝 − 𝑝𝐼) + (2𝑝− 2)𝑉 𝑝+2 − (𝑝− 2)𝑉 2 − 2𝑝𝑉 𝑝 + 𝑝𝐼

]︀
(2𝑉 𝑝 − 𝐼)−1,

= 𝐼 +
1
𝑝

[︀
(2𝑝− 2)𝑉 𝑝+2 − (𝑝− 2)𝑉 2 − 2𝑝𝑉 𝑝 + 𝑝𝐼

]︀
(2𝑉 𝑝 − 𝐼)−1.

Due to spectral theorem for symmetric matrices [18], since 𝑉 ∈ S𝑛
+, we obtain

𝑉 = 𝑄−1𝑑𝑖𝑎𝑔(𝜆1(𝑉 ), . . . , 𝜆𝑛(𝑉 ))𝑄,

where 𝑄 is any orthonormal matrix (𝑄𝑇 = 𝑄−1) that diagonalizes 𝑉 . Then

𝑉 2 + 𝑉 𝑃𝑉 − 𝐼 = 𝑄−1𝑑𝑖𝑎𝑔(𝜙(𝜆1(𝑉 )), . . . , 𝜙(𝜆𝑛(𝑉 )))𝑄, (11)

where 𝜙(𝜆𝑖(𝑉 )) = (2𝑝−2)𝜆𝑝+2
𝑖 (𝑉 )−(𝑝−2)𝜆2

𝑖 (𝑉 )−2𝑝𝜆𝑝
𝑖 (𝑉 )+𝑝

𝑝(2𝜆𝑝
𝑖 (𝑉 )−1)

, for 𝑖 = 1, . . . , 𝑛.

Let us consider 𝑓(𝑡) = (2𝑝 − 2)𝑡𝑝+2 − (𝑝 − 2)𝑡2 − 2𝑝𝑡𝑝 + 𝑝, for all 𝑡 > 1
𝑝√2

and 𝑝 ≥ 2. One easily verify that
𝑓 ′(1) = 0 and 𝑓 ′′(1) = 6𝑝2 − 4𝑝 > 0. Hence, 𝑓(𝑡) ≥ 𝑓(1) = 0 for all 𝑡 ∈ R. From this, together with 2𝑡𝑝 − 1 > 0
for 𝑡 > 1

𝑝√2
and (11), it follows that 0 ⪯ 𝑉 2 + 𝑉 𝑃𝑉 − 𝐼. In addition, since 𝑃 2

𝑉

4 ≻ 0, we obtain for 𝜆min(𝑉 ) ≥ 1
𝑝√2

and 𝑝 ≥ 2, 𝐼 − 𝑃 2
𝑉

4 ⪯ 𝑉 2 + 𝑉 𝑃𝑉 .
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To prove the second inequality, we consider the following function

𝑔(𝑡) =
(2𝑝− 2)𝑡𝑝+2 − (𝑝− 2)𝑡2 − 2𝑝𝑡𝑝 + 𝑝

𝑝(2𝑡𝑝 − 1)
, for all 𝑡 >

1
𝑝
√

2
and 𝑝 ≥ 2,

=
(1− 𝑡)2((2𝑝− 2)𝑡𝑝 + 2(2𝑝− 2)𝑡𝑝−1 + 2(2𝑝− 3)𝑡𝑝−2 + ...+ 2𝑝𝑡+ 𝑝)

𝑝(2𝑡𝑝 − 1)

×𝑝(2𝑡
𝑝 − 1)(𝑡+ 𝑡2 + 𝑡3 + ...+ 𝑡𝑝)2

𝑝(2𝑡𝑝 − 1)(𝑡+ 𝑡2 + 𝑡3 + ...+ 𝑡𝑝)2
,

=
(︂

𝑡− 𝑡𝑝+1

𝑝(2𝑡𝑝 − 1)

)︂2
𝑝(2𝑡𝑝 − 1)((2𝑝− 2)𝑡𝑝 + 2(2𝑝− 2)𝑡𝑝−1 + 2(2𝑝− 3)𝑡𝑝−2 + ...+ 2𝑝𝑡+ 𝑝)

(𝑡+ 𝑡2 + 𝑡3 + ...+ 𝑡𝑝)2
,

≤
(︂

𝑡− 𝑡𝑝+1

𝑝(2𝑡𝑝 − 1)

)︂2 2𝑝(2𝑝− 2)𝑡𝑝(𝑡𝑝 + 2𝑡𝑝−1 + 3𝑡𝑝−2 + ...+ 1)
(𝑡+ 𝑡2 + 𝑡3 + ...+ 𝑡𝑝)2

,

= 2𝑝(2𝑝− 2)
(︂

𝑡− 𝑡𝑝+1

𝑝(2𝑡𝑝 − 1)

)︂2 (𝑡2𝑝 + 2𝑡2𝑝−1 + 3𝑡2𝑝−2 + ...+ 𝑡𝑝)
(𝑡+ 𝑡2 + 𝑡3 + ...+ 𝑡𝑝)2

,

≤ 2𝑝(2𝑝− 2)
(︂

𝑡− 𝑡𝑝+1

𝑝(2𝑡𝑝 − 1)

)︂2

= ((2𝑝− 1)2 − 1)
(︂

𝑡− 𝑡𝑝+1

𝑝(2𝑡𝑝 − 1)

)︂2

.

Substituting this bound into (11), we obtain

𝑉 2 + 𝑉 𝑃𝑉 − 𝐼 ⪯ ((2𝑝− 1)2 − 1)𝑄−1𝑑𝑖𝑎𝑔

⎛⎝(︃𝜆1(𝑉 )− 𝜆𝑝+1
1 (𝑉 )

𝑝(2𝜆𝑝
1(𝑉 )− 1)

)︃2

, . . . ,

(︂
𝜆𝑛(𝑉 )− 𝜆𝑝+1

𝑛 (𝑉 )
𝑝(2𝜆𝑝

𝑛(𝑉 )− 1)

)︂2
⎞⎠𝑄,

= ((2𝑝− 1)2 − 1)
𝑃 2

𝑉

4
,

where the last equality follows from the fact that 𝑃 2
𝑉

4 ≻ 0. This completes the proof. �

For the analysis of the algorithm, we define a norm-based proximity measure 𝛿(𝑋,𝑍;𝜇) as follows:

𝛿 := 𝛿(𝑋,𝑍;𝜇) =
1
2
‖𝑃𝑉 ‖𝐹 =

1
𝑝

⃦⃦
(𝑉 − 𝑉 𝑝+1)(2𝑉 𝑝 − 𝐼)−1

⃦⃦
𝐹
. (12)

One can easily check that
𝛿(𝑋,𝑍;𝜇) = 0 ⇔ 𝑉 = 𝐼 ⇔ 𝑋𝑍 = 𝜇𝐼.

Hence, 𝛿 is a distance which measure the closeness of primal-dual points (𝑋, 𝑦, 𝑍) to the central path.

4. The algorithm

A primal-dual path following interior point algorithm based on new search directions for SDO is given in
Figure 1.

5. Analysis of the algorithm

In this section, we will show that the proposed algorithm can solve the SDO in polynomial time.
To simplify the analysis of the Algorithm 4, we introduce 𝑄𝑉 = 𝐷𝑋−𝐷𝑍 . Furthermore, from the third equation
of (9), it follows that

𝐷𝑋 =
𝑃𝑉 +𝑄𝑉

2
, 𝐷𝑍 =

𝑃𝑉 −𝑄𝑉

2
, 𝐷𝑋𝑍 =

𝑃 2
𝑉 −𝑄2

𝑉

4
=
𝐷𝑋𝐷𝑍 +𝐷𝑍𝐷𝑋

2
· (13)
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Figure 1. Algorithm 4.

Due to the orthogonality of the matrices 𝐷𝑋 and 𝐷𝑍 we obtain

‖𝑃𝑉 ‖𝐹 = ‖𝑄𝑉 ‖𝐹 = 2𝛿(𝑋,𝑍;𝜇). (14)

We start first by stating the following technical lemmas, that will be used later. Let 0 ≤ 𝛼 ≤ 1.

Lemma 5.1. [7] Let 𝑋(𝛼) := 𝑋 + 𝛼∆𝑋, 𝑍(𝛼) := 𝑍 + 𝛼∆𝑍. If one has

det(𝑋(𝛼)𝑍(𝛼)) > 0,∀0 ≤ 𝛼 ≤ 𝛼̄

then 𝑋(𝛼̄) ≻ 0 and 𝑍(𝛼̄) ≻ 0.

Lemma 5.2. [7] Let 𝑄 ∈ R𝑛×𝑛, be symmetric (𝑄 = 𝑄⊤) and 𝑀 ∈ R𝑛×𝑛 be skew-symmetric (𝑀 = −𝑀⊤). One
has det(𝑄+𝑀) > 0 if 𝑄 ≻ 0. Moreover, if 𝜆𝑖(𝑄+𝑀) ∈ R for 𝑖 = 1, ..., 𝑛, then

0 < 𝜆min(𝑄) ≤ 𝜆min(𝑄+𝑀) ≤ 𝜆max(𝑄+𝑀) ≤ 𝜆max(𝑄).

The next lemma shows the strict feasibility of a full NT-step under the condition 𝛿 < 1.

Lemma 5.3. Let 𝛿 < 1 and assume that 𝜆min (𝑉 ) > 1
𝑝√2
, then the full NT-step is strictly feasible.

Proof. Let 𝑋(𝛼) = (𝑋 + 𝛼∆𝑋), 𝑍(𝛼) = (𝑍 + 𝛼∆𝑍) with 0 ≤ 𝛼 ≤ 1. From (7) and (8), it follows that

𝑋(𝛼)𝑍(𝛼) = 𝑋𝑍 + 𝛼(∆𝑋𝑍 +𝑋∆𝑍) + 𝛼2∆𝑋∆𝑍,
= 𝜇𝐷

[︀
𝑉 2 + 𝛼(𝐷𝑋𝑉 + 𝑉 𝐷𝑍) + 𝛼2𝐷𝑋𝐷𝑍

]︀
𝐷−1,

∼ 𝜇
[︀
𝑉 2 + 𝛼(𝐷𝑋𝑉 + 𝑉 𝐷𝑍) + 𝛼2𝐷𝑋𝐷𝑍

]︀
,

and which can be written as
𝑋(𝛼)𝑍(𝛼) ∼ 𝐵(𝛼) +𝑀(𝛼) (15)

where
𝑀(𝛼) = 𝜇𝛼[𝐷𝑋𝑉 − 𝑉 𝐷𝑋 +

1
2
𝛼(𝐷𝑋𝐷𝑍 −𝐷𝑍𝐷𝑋)],
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is skew-symmetric. Then by Lemma 5.2, it follows that det(𝑋(𝛼)𝑍(𝛼)) > 0, if the matrix

𝐵(𝛼) = 𝜇
[︀
𝑉 2 + 𝛼𝑉 (𝐷𝑍 +𝐷𝑋) + 𝛼2𝐷𝑋𝑍

]︀
,

= 𝜇
[︀
𝑉 2 + 𝛼𝑉 𝑃𝑉 + 𝛼2𝐷𝑋𝑍

]︀
,

is positive definite. Now, in view of (13) and Lemma 3.1, 𝐵(𝛼) can be written as:

𝐵(𝛼) = 𝜇

[︂
𝑉 2 + 𝛼𝑉 𝑃𝑉 + 𝛼2𝑃

2
𝑉 −𝑄2

𝑉

4

]︂
,

= 𝜇

[︂
(1− 𝛼)𝑉 2 + 𝛼(𝑉 2 + 𝑉 𝑃𝑉 ) + 𝛼2𝑃

2
𝑉 −𝑄2

𝑉

4

]︂
,

⪰
[︂
(1− 𝛼)𝑉 2 + 𝛼

(︂
𝐼 − 𝑃 2

𝑉

4

)︂
+ 𝛼2𝑃

2
𝑉 −𝑄2

𝑉

4

]︂
,

= (1− 𝛼)𝑉 2 + 𝛼

(︂
𝐼 − (1− 𝛼)

𝑃 2
𝑉

4
− 𝛼

𝑄2
𝑉

4

)︂
,

Then, 𝐵(𝛼) ≻ 0 if 𝛼 ≤ 1 and⃦⃦⃦⃦
(1− 𝛼)

𝑃 2
𝑉

4
− 𝛼

𝑄2
𝑉

4

⃦⃦⃦⃦
𝐹

≤ (1− 𝛼)
⃦⃦⃦⃦
𝑃 2

𝑉

4

⃦⃦⃦⃦
𝐹

+ 𝛼

⃦⃦⃦⃦
𝑄2

𝑉

4

⃦⃦⃦⃦
𝐹

≤ (1− 𝛼)
‖𝑃𝑉 ‖2𝐹

4
+ 𝛼

‖𝑄𝑉 ‖2𝐹
4

= 𝛿2 < 1,

where the last equality is due to (14). In addition, since 𝑋(0) ≻ 0 and 𝑍(0) ≻ 0, Lemma 5.1, implies that
𝑋(1) ≻ 0 and 𝑍(1) ≻ 0. This completes the proof. �

For simplicity, we may write 𝑋+ = 𝑋(1) and 𝑍+ = 𝑍(1), then

𝜇𝑉 2
+ ∼ 𝑋+𝑍+.

The following lemma gives a lower bound for the smallest eigenvalue of 𝑉 2
+, denoted by 𝜆min(𝑉 2

+), after a full
NT-step.

Lemma 5.4. Let 𝛿 < 1 then we have
𝜆min(𝑉 2

+) ≥ (1− 𝛿2),

where 𝜆min(𝑉 2
+) is the smallest eigenvalue of 𝑉 2

+.

Proof. From (15), in Lemma 5.3, letting 𝛼 = 1, we get

𝜇𝑉 2
+ ∼ 𝑋+𝑍+ ∼ 𝐵(1) +𝑀(1) ∼ 𝜇(𝑉 2 + 𝑉 𝑃𝑉 ) + 𝜇

𝑃 2
𝑉 −𝑄2

𝑉

4
+𝑀(1).

It follows that

𝜆min(𝑉 2
+) = 𝜆min(𝑉 2 + 𝑉 𝑃𝑉 +

𝑃 2
𝑉

4
− 𝑄2

𝑉

4
+

1
𝜇
𝑀(1)).

Using Lemmas 3.1, 5.2 and the skew-symmetric of 𝑀(1), it implies that:

𝜆min(𝑉 2
+) ≥ 𝜆min(𝐼 − 𝑄2

𝑉

4
) ≥ 1− 𝜆max

(︂
𝑄2

𝑉

4

)︂
≥ 1−

⃦⃦⃦⃦
𝑄2

𝑉

4

⃦⃦⃦⃦
𝐹

≥ 1−
‖𝑄𝑉 ‖2𝐹

4
= 1− 𝛿2.

Where the last equality is follows from (14). This completes the proof. �

The next result shows the quadratic convergence of the proximity.
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Lemma 5.5. If 𝛿 := 𝛿(𝑋,𝑍;𝜇) <
√︁

1− 1
𝑝√4

and assume that 𝜆min (𝑉 ) > 1
𝑝√2
. Then 𝜆min (𝑉+) > 1

𝑝√2
and

𝛿+ := 𝛿(𝑋+, 𝑍+;𝜇) ≤ (1− 𝛿2)
𝑝
2 + (1− 𝛿2)

𝑝−1
2 + ...+ (1− 𝛿2)

1
2

𝑝(2(1− 𝛿2)
𝑝
2 − 1)(1 + (1− 𝛿2)

1
2 )

((2𝑝− 1)2 + 1)𝛿2.

Proof. Let 𝛿 <
√︁

1− 1
𝑝√4

and 𝜆min (𝑉 ) > 1
𝑃√2
. Then by Lemma 5.4, we deduce that

𝜆min(𝑉+) ≥
√︀

1− 𝛿2 >

√︃
1−

(︂
1− 1

𝑝
√

4

)︂
=

√︃
1

4
1
𝑝

=
1

𝑝
√

2
,

which implies that 𝜆min (𝑉+) > 1
𝑃√2

. Since

𝑉+ − 𝑉 𝑝+1
+ = (𝑉 𝑃

+ + 𝑉 𝑝−1
+ + ...+ 𝑉+)(𝐼 − 𝑉+),

we have

𝑝𝛿(𝑋+, 𝑍+;𝜇) =
⃦⃦⃦

(𝑉+ − 𝑉 𝑝+1
+ )(2𝑉 𝑝

+ − 𝐼)−1
⃦⃦⃦

𝐹
,

=
⃦⃦⃦

(𝑉+ − 𝑉 𝑝+1
+ )(𝐼 + 𝑉+)(𝐼 + 𝑉+)−1(2𝑉 𝑝

+ − 𝐼)−1
⃦⃦⃦

𝐹
,

=
⃦⃦⃦

(𝑉 𝑃
+ + 𝑉 𝑝−1

+ + ...+ 𝑉+)(𝐼 + 𝑉+)−1(2𝑉 𝑝
+ − 𝐼)−1(𝐼 − 𝑉 2

+)
⃦⃦⃦

𝐹
,

=

⎛⎝ 𝑛∑︁
𝑖=1

(︃
(𝜆𝑖(𝑉 𝑃

+ ) + 𝜆𝑖(𝑉
𝑝−1
+ ) + ...+ 𝜆𝑖(𝑉+))(1− 𝜆𝑖(𝑉 2

+))
(1 + 𝜆𝑖(𝑉+))(2𝜆𝑖(𝑉

𝑝
+)− 1)

)︃2
⎞⎠ 1

2

,

≤ 𝑛
max
𝑖=1

(︃
(𝜆𝑖(𝑉 𝑃

+ ) + 𝜆𝑖(𝑉
𝑝−1
+ ) + ...+ 𝜆𝑖(𝑉+))

(1 + 𝜆𝑖(𝑉+))(2𝜆𝑖(𝑉
𝑝
+)− 1)

)︃(︃
𝑛∑︁

𝑖=1

(1− 𝜆𝑖(𝑉 2
+))2

)︃ 1
2

,

=
(𝜆min(𝑉 𝑃

+ ) + 𝜆min(𝑉 𝑝−1
+ ) + ...+ 𝜆min(𝑉+))

(1 + 𝜆min(𝑉+))(2𝜆min(𝑉 𝑝
+)− 1)

⃦⃦
𝐼 − 𝑉 2

+

⃦⃦
𝐹
,

where the last equality follows from the fact that the function 𝑓(𝑡) = 𝑡𝑃 +𝑡𝑝−1+...+𝑡
(2𝑡𝑝−1)(1+𝑡) is decreasing on 𝑡 > 1

𝑃√2
. By

using Lemma 5.4, we obtain

𝛿(𝑋+, 𝑍+;𝜇) ≤ (1− 𝛿2)
𝑝
2 + (1− 𝛿2)

𝑝−1
2 + ...+ (1− 𝛿2)

1
2

𝑝(2(1− 𝛿2)
𝑝
2 − 1)(1 + (1− 𝛿2)

1
2 )

⃦⃦
𝐼 − 𝑉 2

+

⃦⃦
𝐹
. (16)

Now, we prove that ⃦⃦
𝐼 − 𝑉 2

+

⃦⃦
𝐹
≤ ((2𝑝− 1)2 + 1)𝛿2.

Since 𝑋(1)𝑍(1) ∼ 𝜇𝑉 2
+ then by Lemmas 5.3, 3.1 and (13), we deduce that

𝑉 2
+ ∼ 𝑉 2 + 𝑉 𝑃𝑉 +𝐷𝑋𝑍 +

1
𝜇
𝑀(1),

⪯ 𝐼 + ((2𝑝− 1)2 − 1)
𝑃 2

𝑉

4
+
𝑃 2

𝑉

4
− 𝑄2

𝑉

4
+

1
𝜇
𝑀(1),

= 𝐼 + (2𝑝− 1)2
𝑃 2

𝑉

4
− 𝑄2

𝑉

4
+

1
𝜇
𝑀(1),
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consequently

𝑉 2
+ − 𝐼 ⪯ (2𝑝− 1)2

𝑃 2
𝑉

4
− 𝑄2

𝑉

4
+

1
𝜇
𝑀(1).

By using the Frobenius norm, we obtain⃦⃦
𝐼 − 𝑉 2

+

⃦⃦
𝐹
≤
⃦⃦⃦⃦
−(2𝑝− 1)2

𝑃 2
𝑉

4
+
𝑄2

𝑉

4
− 1
𝜇
𝑀(1)

⃦⃦⃦⃦
𝐹

,

≤
⃦⃦⃦⃦
−(2𝑝− 1)2

𝑃 2
𝑉

4

⃦⃦⃦⃦
𝐹

+
⃦⃦⃦⃦
𝑄2

𝑉

4
− 1
𝜇
𝑀(1)

⃦⃦⃦⃦
𝐹

,

≤ (2𝑝− 1)2
⃦⃦⃦⃦
𝑃 2

𝑉

4

⃦⃦⃦⃦
𝐹

+
⃦⃦⃦⃦
𝑄2

𝑉

4

⃦⃦⃦⃦
𝐹

,

≤ (2𝑝− 1)2
‖𝑃𝑉 ‖2𝐹

4
+
‖𝑄𝑉 ‖2𝐹

4
,

= ((2𝑝− 1)2 + 1)𝛿2. (17)

Where the last equality is due to (14) and the third inequality becomes from the following inequality⃦⃦⃦⃦
𝑄2

𝑉

4
− 1
𝜇
𝑀(1)

⃦⃦⃦⃦2

𝐹

= tr

[︃(︂
𝑄2

𝑉

4
− 1
𝜇
𝑀(1)

)︂(︂
𝑄2

𝑉

4
− 1
𝜇
𝑀(1)

)︂𝑇
]︃
,

= tr

[︃(︂
𝑄2

𝑉

4

)︂2

+
𝑄2

𝑉

4
1
𝜇
𝑀𝑇 (1) +

1
𝜇
𝑀𝑇 (1)

𝑄2
𝑉

4
− 1
𝜇2
𝑀(1)𝑀𝑇 (1)

]︃
,

≤ tr

[︃(︂
𝑄2

𝑉

4

)︂2
]︃

=
⃦⃦⃦⃦
𝑄2

𝑉

4

⃦⃦⃦⃦2

𝐹

.

Here, the inequality is due to 𝑄2
𝑉

4
1
𝜇𝑀

𝑇 (1)+ 1
𝜇𝑀

𝑇 (1)𝑄2
𝑉

4 is skew-symmetric and 𝑀(1)𝑀𝑇 (1) is positive semidef-
inite. Substituting (16) into (17) yields the result. This completes the proof. �

The next lemma, shows the influence of a full NT-step on the duality gap.

Lemma 5.6. After a full NT-step, we have

𝑋+ ∙ 𝑍+ ≤ 𝜇(𝑛+ ((2𝑝− 1)2 − 1)𝛿2). (18)

Proof. From (15) in the proof of Lemma 5.3, we have

𝑋+ ∙ 𝑍+ = 𝜇Tr(𝑉 2
+) = 𝜇Tr(𝑉 2 + 𝑉 𝑃𝑉 +𝐷𝑋𝑍 +

1
𝜇
𝑀(1)),

by skew-symmetry of 𝑀(1) and Lemma 3.1, it implies

𝑋+ ∙ 𝑍+ = 𝜇Tr(𝑉 2 + 𝑉 𝑃𝑉 +𝐷𝑋𝑍),

≤ 𝜇Tr(𝐼 + ((2𝑝− 1)2 − 1)
𝑃 2

𝑉

4
+𝐷𝑋𝑍),

= 𝜇(𝑛+ ((2𝑝− 1)2 − 1)Tr
(︂
𝑃 2

𝑉

4

)︂
+ Tr(𝐷𝑋𝑍)),

= 𝜇(𝑛+ ((2𝑝− 1)2 − 1)𝛿2+𝐷𝑋 ∙𝐷𝑍).

From the orthogonality of the matrices 𝐷𝑋 and 𝐷𝑍 , we get

𝑋+ ∙ 𝑍+ ≤ 𝜇(𝑛+ ((2𝑝− 1)2 − 1)𝛿2).

This completes the proof. �
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In the next lemma, we investigate the effect of a full NT-step on the proximity after an update of the parameter
𝜇.

Lemma 5.7. Let 𝛿 := 𝛿(𝑋,𝑍;𝜇) < 1
2((𝑝−1)2+𝑝) , 𝜆min (𝑉 ) > 1

𝑝√2
and 𝜇+ = (1 − 𝜃)𝜇 with 0 < 𝜃 < 1. Then

𝜆min

(︁
𝑉+

)︁
> 1

𝑝√2
where 𝑉 2

+ := 𝑉 2
+

1−𝜃 ∼
𝑋+𝑍+

𝜇+
and

𝛿(𝑋+, 𝑍+;𝜇+) ≤ 𝛽𝑝 + 𝜂𝛽𝑝−1 + ...+ 𝜂𝑝−1𝛽

𝑝𝜂(2𝛽𝑝 − 𝜂𝑝)(𝜂 + 𝛽)
(𝜃
√
𝑛+ ((2𝑝− 1)2 + 1)𝛿2),

with 𝛽 :=
√

1− 𝛿2 and 𝜂 :=
√

1− 𝜃.
In addition, if 𝜃 = 1

2𝑝4
√

𝑛
, then 𝛿(𝑋+, 𝑍+;𝜇+) < 1

2((𝑝−1)2+𝑝) ·

Proof. From Lemma 5.4 and the hypothesis of this Lemma, it follows that 𝜆min (𝑉+) > 1
𝑝√2
. Hence, 𝑉+ = 𝑉+√

1−𝜃

and since 1√
1−𝜃

> 1 for all 0 < 𝜃 < 1, then we get

𝜆min

(︁
𝑉+

)︁
>

1√
1− 𝜃

𝜆min (𝑉+) >
1

𝑝
√

2
·

Now, to simplify the notation we write 𝜂 :=
√

1− 𝜃 and 𝛽 =
√

1− 𝛿2. In this way, 𝑉+ = 1
𝜂𝑉+. Hence, we have

𝑝𝛿(𝑋+, 𝑍+;𝜇+) =
⃦⃦⃦

(𝑉+ − 𝑉 𝑝+1
+ )(2𝑉 𝑝

+ − 𝐼)−1
⃦⃦⃦

𝐹
,

=
⃦⃦⃦

(𝑉+ − 𝑉 𝑝+1
+ )(𝐼 + 𝑉+)(𝐼 + 𝑉+)−1(2𝑉 𝑝

+ − 𝐼)−1
⃦⃦⃦

𝐹
,

=
⃦⃦⃦

(𝑉 𝑃
+ + 𝑉 𝑝−1

+ + ...+ 𝑉+)(𝐼 + 𝑉+)−1(2𝑉 𝑝
+ − 𝐼)−1(𝐼 − 𝑉 2

+)
⃦⃦⃦

𝐹
,

=

⎛⎝ 𝑛∑︁
𝑖=1

(︃
(𝜆𝑖(𝑉 𝑃

+ ) + 𝜆𝑖(𝑉
𝑝−1
+ ) + ...+ 𝜆𝑖(𝑉+))(1− 𝜆𝑖(𝑉 2

+))

(2𝜆𝑖(𝑉
𝑝
+)− 1)(1 + 𝜆𝑖(𝑉+))

)︃2
⎞⎠ 1

2

,

≤ 𝑛
max
𝑖=1

(︃
(𝜆𝑖(𝑉 𝑃

+ ) + 𝜆𝑖(𝑉
𝑝−1
+ ) + ...+ 𝜆𝑖(𝑉+))

(2𝜆𝑖(𝑉
𝑝
+)− 1)(1 + 𝜆𝑖(𝑉+))

)︃(︃
𝑛∑︁

𝑖=1

(1− 𝜆𝑖(𝑉 2
+))2

)︃ 1
2

,

=
(𝜆min(𝑉 𝑃

+ ) + 𝜆min(𝑉 𝑝−1
+ ) + ...+ 𝜆min(𝑉+))

(2𝜆min(𝑉 𝑝
+)− 1)(1 + 𝜆min(𝑉+))

⃦⃦⃦
𝐼 − 𝑉 2

+

⃦⃦⃦
𝐹
,

where the last equality follows from the fact that the function 𝑓(𝑡) = 𝑡𝑃 +𝑡𝑝−1+...+𝑡
(2𝑡𝑝−1)(1+𝑡) is decreasing on 𝑡 > 1

𝑝√2
.

Now, by using Lemma 5.4, one has

𝜆min(𝑉+) =
1
𝜂
𝜆min(𝑉+) ≥ 1

𝜂

√︀
1− 𝛿2 =

𝛽

𝜂
,

which implies that 𝑓(𝑡) ≤ 𝑓(𝛽
𝜂 ). Hence, we get

𝛿(𝑋+, 𝑍+;𝜇+) ≤ 1
𝑝𝜂

𝛽𝑝 + 𝜂𝛽𝑝−1 + ...+ 𝜂𝑝−1𝛽

(2𝛽𝑝 − 𝜂𝑝)(𝜂 + 𝛽)

⃦⃦
𝜂2𝐼 − 𝑉 2

+

⃦⃦
𝐹
. (19)

On the other hand, we have ⃦⃦
𝜂2𝐼 − 𝑉 2

+

⃦⃦
𝐹

=
⃦⃦

(1− 𝜃)𝐼 − 𝑉 2
+

⃦⃦
𝐹
,

≤ 𝜃 ‖𝐼‖𝐹 +
⃦⃦

(𝐼 − 𝑉 2
+)
⃦⃦

𝐹
,

≤ 𝜃
√
𝑛+ ((2𝑝− 1)2 + 1)𝛿2. (20)
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We now combine the results in (19) and (20), and this yields the desired result. To prove the second part, let
us consider the function 𝑢(𝜂) = 𝛽𝑝+𝜂𝛽𝑝−1+...+𝜂𝑝−1𝛽

𝑝(2𝛽𝑝−𝜂𝑝)(𝜂+𝛽) , for 0 < 𝜂 < 1, 𝛽 > 1
𝑝√2

and 𝑝 ≥ 2, which is increasing with
respect to 𝜂. So, 𝑢(𝜂) < 𝑢(1). Combining this result with the upper bound of 𝛿(𝑋+, 𝑍+;𝜇+) yields

𝛿(𝑋+, 𝑍+;𝜇+) ≤ 𝛽𝑝 + 𝛽𝑝−1 + ...+ 𝛽

𝑝𝜂(2𝛽𝑝 − 1)(1 + 𝛽)
(𝜃
√
𝑛+ ((2𝑝− 1)2 + 1)𝛿2), (21)

Now, let us define 𝑧(𝛽) = 𝛽𝑝+𝛽𝑝−1+...+𝛽
𝑝(2𝛽𝑝−1)(1+𝛽) , for 𝛽 > 1

𝑝√2
, which is decreasing with respect to 𝛽. From this along

with 𝛽 =
√

1− 𝛿2 >
√︁

1− 1
4((𝑝−1)2+𝑝)2 := 𝛾(𝑝) and the fact that 𝛾(𝑝) increasing for 𝑝 ≥ 2, we get

𝑧(𝛽) < 𝑧(𝛾(𝑝)) < 𝑧(𝛾(∞)) = 𝑧(1) =
1
2
.

Substituting this bound into (21), and using 𝜃 = 1
2𝑝4

√
𝑛

and 𝛿 < 1
2((𝑝−1)2+𝑝) , gives

𝛿(𝑋+, 𝑍+;𝜇+) ≤ 1
2
√

1− 𝜃
(𝜃
√
𝑛+ ((2𝑝− 1)2 + 1)𝛿2),

≤
(︂

1
2𝑝4

+
(2𝑝− 1)2 + 1

4((𝑝− 1)2 + 𝑝)2

)︂
𝑝2√︀

2(2𝑝4 − 1)
,

= ℎ(𝑝)
1

2((𝑝− 1)2 + 𝑝)
.

where ℎ(𝑝) =
(︁

((𝑝−1)2+𝑝)
𝑝4 + (2𝑝−1)2+1

2((𝑝−1)2+𝑝)

)︁
𝑝2√

2(2𝑝4−1)
, for 𝑝 ≥ 2, which is increasing with respect to 𝑝 and

lim
𝑝→+∞

ℎ(𝑝) = 1. Consequently,

𝛿(𝑋+, 𝑍+;𝜇+) ≤ 1
2((𝑝− 1)2 + 𝑝)

·

This completes the proof. �

From Lemma 5.7, we deduce that Algorithm 4 is well defined. The next lemma gives an upper bound for the
number of iterations produced by Algorithm 4.

Lemma 5.8. Let 𝑋𝑘+1 and 𝑍𝑘+1 be the (𝑘 + 1)− 𝑡ℎ iterate generated by Algorithm 4, with 𝜇 := 𝜇𝑘. Then

𝑋𝑘+1 ∙ 𝑍𝑘+1 ≤ 𝜖,

if

𝑘 ≥

⎡⎣1
𝜃

log

⎛⎝𝜇0(𝑛+ (2𝑝−1)2−1
4((𝑝−1)2+𝑝)2 )

𝜖

⎞⎠⎤⎦ .
Proof. In view of (18) in Lemma 5.6, it follows that:

𝑋𝑘+1 ∙ 𝑍𝑘+1 ≤ 𝜇𝑘(𝑛+ ((2𝑝− 1)2 − 1)𝛿2),

≤ 𝜇𝑘

(︂
𝑛+

(2𝑝− 1)2 − 1
4((𝑝− 1)2 + 𝑝)2

)︂
,

with
𝜇𝑘 = (1− 𝜃)𝜇𝑘−1 = (1− 𝜃)𝑘𝜇0.
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Hence, we have

𝑋𝑘+1 ∙ 𝑍𝑘+1 ≤ (1− 𝜃)𝑘𝜇0

(︂
𝑛+

(2𝑝− 1)2 − 1
4((𝑝− 1)2 + 𝑝)2

)︂
.

Thus the inequality 𝑋𝑘+1 ∙ 𝑍𝑘+1 ≤ 𝜖 holds if

(1− 𝜃)𝑘𝜇0

(︂
𝑛+

(2𝑝− 1)2 − 1
4((𝑝− 1)2 + 𝑝)2

)︂
≤ 𝜖.

Now, taking logarithms, we may write

𝑘 log(1− 𝜃) ≤ log 𝜖− log
(︁
𝜇0

(︁
𝑛+ (2𝑝−1)2−1

4((𝑝−1)2+𝑝)2

)︁)︁
,

and since − log(1− 𝜃) ≥ 𝜃 for 0 < 𝜃 < 1, then the inequality is satisfied if

𝑘 ≥ 1
𝜃

log

⎛⎝𝜇0

(︁
𝑛+ (2𝑝−1)2−1

4((𝑝−1)2+𝑝)2

)︁
𝜖

⎞⎠ .

This completes the proof. �

For 𝜃 = 1
2𝑝4

√
𝑛

, we obtain the following theorem.

Theorem 5.9. Let 𝜃 = 1
2𝑝4

√
𝑛
. Then Algorithm 4 requires at most

𝑂
(︁
𝑝4
√
𝑛 log

(︁𝑛
𝜖

)︁)︁
iterations, if 𝑋0 = 𝑍0 = 𝐼. This choice of initial point can be done by the embedding technique [7].

Proof. It is a straightforward from Lemma 5.8. This completes the proof. �

6. Numerical results

In order to compare the efficiency of the algorithm with the existing methods and to show the influence of the
parameter 𝑝 on the number of iterations produced by the algorithm, we present some numerical results under
Matlab 8.1 where the implementation is done on a computer with an Intel core 2.3 GHz processor and 4 GB
RAM, for solving some semidefinite optimization problems.

Note that the value of the parameter 𝑝 may be very large, which leads to a very small value of the parameter
𝜃, see Theorem 5.9. This motivated us to make some changes in the implementation of the proposed algorithm.
The initial primal dual point (𝑋0, 𝑦0, 𝑍0) with 𝜇0 = 𝑋0∙𝑍0

𝑛 is chosen such that the pair is strictly feasible, the
proximity 𝛿(𝑋0, 𝑍0;𝜇0) ≤ 𝜏 and the smallest eigenvalue of the matrix 𝑉 is greater than a positive constant. At
each iteration, the value of the parameter 𝜇 was calculated as 𝜇+ = 𝜎min{(𝑋+𝑍+)𝑖𝑖 : 1≤𝑖≤𝑛}

𝑙𝑏 , where 0 < 𝜎 < 1
and 𝑙𝑏 is a given lower bound, which in this case is 0.5

2
𝑝 , 𝑝 ≥ 2 and 𝜎 = 0.2. The technique for determining

the value of the parameter 𝜇+ ensures that 𝜆min(𝑉 ) ≥ 1
𝑝√2

with 𝑝 ≥ 2, which is signifiant in our case for the
used search direction. Moreover, to guarantee that the iterates remain interior, we use the following strategy:
we compute at each iteration a maximum step size 𝛼max such that 𝑋 + 𝜉𝛼max∆𝑋 ≻ 0 and 𝑍 + 𝜉𝛼max∆𝑍 ≻ 0
with 𝛼max = min(𝛼𝑋 , 𝛼𝑍) and 𝜉 ∈ (0, 1), where 𝛼𝑋 and 𝛼𝑍 are the primal and the dual feasible step size given
by 𝛼𝑋 = min𝑛

𝑖=1 𝛼
′

𝑋 [𝑖], with

𝛼
′

𝑋 [𝑖] =

⎧⎪⎨⎪⎩
−1

𝜆𝑖

(︂
𝑋
−1
2 Δ𝑋𝑋

−1
2

)︂ , if 𝜆𝑖

(︁
𝑋
−1
2 ∆𝑋𝑋

−1
2

)︁
< 0

1 , if 𝜆𝑖

(︁
𝑋
−1
2 ∆𝑋𝑋

−1
2

)︁
≥ 0,
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and 𝛼𝑍 = min𝑛
𝑖=1 𝛼

′

𝑍 [𝑖], with

𝛼
′

𝑍 [𝑖] =

⎧⎪⎨⎪⎩
−1

𝜆𝑖

(︂
𝑍
−1
2 Δ𝑍𝑍

−1
2

)︂ , if 𝜆𝑖

(︁
𝑍
−1
2 ∆𝑍𝑍

−1
2

)︁
< 0

1 , if 𝜆𝑖

(︁
𝑍
−1
2 ∆𝑍𝑍

−1
2

)︁
≥ 0.

To ensure the strict feasibility of the new iterates we used a factor 𝜉 = 0.95. In our computational study, we
compared our algorithm where 𝜓(𝑡) = 𝑡𝑝, 𝑝 ≥ 2 with the variant of interior point algorithms that use the
following AET for solving SDO problems: 𝜓(𝑡) = 𝑡 , 𝜓(𝑡) =

√
𝑡 and 𝜓(𝑡) = 𝑡−

√
𝑡 (see [7, 11, 18], respectively)

where the value of 𝑙𝑏 is 1
4 . In all cases, the accuracy parameter had a value 𝜖 = 10−5. Here, we use the following

notations: ”iter” means the number of iterations performed by the algorithm in order to get an approximate
optimal solution. ”CPU” denotes the time (in seconds) necessary to get an approximate optimal solution for
SDO.

Problem 6.1. We consider the SDO problem in [10], where 𝑚 = 3, 𝑛 = 5, 𝑏 = [−2, 2,−2]⊤,

𝐴1 =

⎡⎢⎢⎢⎣
0 1 0 0 0
1 2 0 0 −1
0 0 0 0 1
0 0 0 −2 −1
0 −1 1 −1 −2

⎤⎥⎥⎥⎦ , 𝐴2 =

⎡⎢⎢⎢⎣
0 0 −2 2 0
0 2 1 0 2
−2 1 −2 0 1
2 0 0 0 0
0 2 1 0 2

⎤⎥⎥⎥⎦

𝐴3 =

⎡⎢⎢⎢⎣
2 2 −1 −1 1
2 0 2 1 1
−1 2 0 1 0
−1 1 1 −2 0
1 1 0 0 −2

⎤⎥⎥⎥⎦ , 𝐶 =

⎡⎢⎢⎢⎣
3 3 −3 1 1
3 5 3 1 2
−3 3 −1 1 2
1 1 1 −3 −1
1 2 2 −1 −1

⎤⎥⎥⎥⎦ .
We take 𝑋0 = 𝑍0 = 𝐼 and 𝑦0 = [1, 1, 1]⊤ as a feasible starting point. An exact optimal solution for Problem 6.1
is given by

𝑋* =

⎡⎢⎢⎢⎣
0.0914 −0.0718 0.0169 0.0649 −0.1583
−0.0718 0.0724 −0.0183 −0.0602 0.1676
0.0169 −0.0183 0.0103 −0.0084 −0.0772
0.0649 −0.0602 −0.0084 0.1481 0.0056
−0.1583 0.1676 −0.0772 0.0056 0.6022

⎤⎥⎥⎥⎦ ,

𝑍* =

⎡⎢⎢⎢⎣
1.4338 0.5754 −0.0295 −0.4043 0.2169
0.5754 1.0965 0.3401 0.2169 −0.1120
−0.0295 0.3401 1.1874 0.2169 0.0478
−0.4043 0.2169 0.2169 0.2831 −0.1415
0.2169 −0.1120 0.0478 −0.1415 0.0957

⎤⎥⎥⎥⎦
and 𝑦* =

[︀
0.8585 1.0937 0.7831

]︀⊤
, the optimal value of both problems is equal to −1.0957. We summarize the

obtained numerical results in Table 1 where the parameter 𝑝 used in the implementation is as follows:

𝑝 ∈ {2, 3, 5, 7, 15, 20, 30}.

Problem 6.2. We consider the SDO problem, where 𝑛 = 2𝑚, 𝑏[𝑖] = 2, 𝑖 = 1, . . . ,𝑚 and

𝐶[𝑖, 𝑗] =
{︂
−1 if 𝑖 = 𝑗 and 𝑖 ≤ 𝑚,
0 otherwise,

𝐴𝑖[𝑗, 𝑘] =
{︂

1 if 𝑗 = 𝑘 = 𝑖 or 𝑗 = 𝑘 = 𝑖+𝑚 ,
0 otherwise,
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Table 1. Number of iterations for Problem 6.1.

𝑡𝑝

𝜓(𝑡) 𝑝 𝑡−
√
𝑡

√
𝑡 𝑡

2 3 5 7 15 20 30

iter 31 40 65 93 203 272 410 67 61 64
CPU 0.1571 0.1587 0.1789 0.2503 0.2841 0.3422 0.5793 0.2444 0.2388 0.2336

Table 2. Number of iterations for Problem 6.2.

𝑡𝑝

(𝑚,𝑛)∖𝜓(𝑡) 𝑝 𝑡−
√
𝑡

√
𝑡 𝑡

2 3 5 7 10

(5, 10) iter 33 43 69 98 141 71 64 68
CPU 0.2163 0.1010 0.1482 0.1877 0.2658 0.1314 0.1649 0.1382

(10, 20) iter 35 45 73 102 148 75 67 71
CPU 0.1339 0.1377 0.2022 0.2668 0.3992 0.2070 0.1801 0.1884

(50, 100) iter 39 50 80 113 164 83 74 79
CPU 1.9779 2.5945 3.4456 3.6638 6.0864 3.5441 3.3478 2.4177

(100, 200) iter 40 52 84 118 171 86 77 82
CPU 6.0358 6.2007 9.5844 9.1948 28.0350 12.8844 10.1662 6.8034

(200, 400) iter 42 54 87 123 178 89 80 85
CPU 21.9279 28.2211 47.4171 68.2180 137.2114 61.2352 51.1357 58.8938

we consider the following starting points:

𝑋0[𝑖, 𝑗] =

⎧⎨⎩2− 𝛾 if 𝑖 = 𝑗 = 1, . . . ,𝑚,
𝛾 if 𝑖 = 𝑗 = 𝑚+ 1, . . . , 𝑛,
0 otherwise,

𝑍0[𝑖, 𝑗] =

⎧⎨⎩
1
𝛾 − 1 if 𝑖 = 𝑗 = 1, . . . ,𝑚,
1
𝛾 if 𝑖 = 𝑗 = 𝑚+ 1, . . . , 𝑛,
0 otherwise,

and 𝑦0[𝑖] = − 1
𝛾 , 𝑖 = 1, . . . ,𝑚, with 𝛾 = (4−

√
8)/2. An exact optimal solution for Problem 6.2 is given by:

𝑋*[𝑖, 𝑗] =
{︂

2 if 𝑖 = 𝑗 = 1, . . . ,𝑚,
0 othewise,

𝑍*[𝑖, 𝑗] =
{︂

1 if 𝑖 = 𝑗 = 𝑚+ 1, . . . , 𝑛,
0 othewise,

and 𝑦*[𝑖] = −1, 𝑖 = 1, . . . ,𝑚. The optimal value of both problems is equal to −𝑛. We summarize the obtained
numerical results in Table 2 where the parameter 𝑝 used in the implementation is as follows:

𝑝 ∈ {2, 3 , 5, 7, 10}.

Comment. Across the numerical results obtained by the algorithm the minimal number of iterations is achieved
by the AET 𝜓(𝑡) = 𝑡𝑝 with 𝑝 = 2 for different size (𝑚,𝑛).
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7. Conclusion

In this work we have extended a primal-dual path-following interior-point method for LO to SDO problems
with full NT-step. Based on the new Darvay’s technique [5], we used the function 𝜓(𝑡) = 𝑡𝑝 with 𝑝 ≥ 2 in order
to determine a class of new search directions. The associated short-step algorithm deserves the best well-known
polynomial complexity, which is the same iteration bound as in the LO case. Moreover, the resulting analysis
is relatively simple and straightforward to the LO analogue in [12]. We also presented some numerical results
to show the efficiency of the proposed method.

Acknowledgements. The author is very grateful and would like to thank the Editor-in-Chief and the anonymous referees
for their useful suggestions which significantly improved the presentation of this paper.
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