Hermite–Hadamard type inequality for ( E , F ) -convex functions and geodesic ( ( E , F ) -convex functions
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4181-4189

The main aim of the present paper is to introduce geodesic (E, F)-convex sets and geodesic (E, F)-functions on a Riemannian manifold. Furthermore, some basic properties of these mappings are investigated. Moreover, the Hadamard-type inequalities for (E, F)-convex functions are proven.

DOI : 10.1051/ro/2022185
Classification : 52A20, 52A41, 53C20, 53C22
Keywords: ($$, $$)-convex functions, geodesic convex functions, geodesic convex sets, geodesic $$-convex functions, Riemannian manifolds
@article{RO_2022__56_6_4181_0,
     author = {Saleh, Wedad},
     title = {Hermite{\textendash}Hadamard type inequality for $( E , F )$-convex functions and geodesic ($( E , F )$-convex functions},
     journal = {RAIRO. Operations Research},
     pages = {4181--4189},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022185},
     mrnumber = {4520672},
     zbl = {1546.26008},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022185/}
}
TY  - JOUR
AU  - Saleh, Wedad
TI  - Hermite–Hadamard type inequality for $( E , F )$-convex functions and geodesic ($( E , F )$-convex functions
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 4181
EP  - 4189
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022185/
DO  - 10.1051/ro/2022185
LA  - en
ID  - RO_2022__56_6_4181_0
ER  - 
%0 Journal Article
%A Saleh, Wedad
%T Hermite–Hadamard type inequality for $( E , F )$-convex functions and geodesic ($( E , F )$-convex functions
%J RAIRO. Operations Research
%D 2022
%P 4181-4189
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022185/
%R 10.1051/ro/2022185
%G en
%F RO_2022__56_6_4181_0
Saleh, Wedad. Hermite–Hadamard type inequality for $( E , F )$-convex functions and geodesic ($( E , F )$-convex functions. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4181-4189. doi: 10.1051/ro/2022185

[1] M. I. Abdulmaged, On some generalization of convex sets, convex functions, and convex optimization problems. M.Sc. thesis, , Department of Mathematics, College of Education Ibn AL-Haitham, University of Baghdad, Iraq (2018).

[2] A. Fernandez and M. Pshtiwan, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 44 (2021) 8431–8414. | MR | Zbl | DOI

[3] A. Iqbal and I. Ahmad, Strong geodesic convex functions of order m . Numer. Funct. Anal. Optim. 40 (2019) 1840–1846. | MR | Zbl | DOI

[4] A. Iqbal, S. Ali and I. Ahmad, On geodesic E -convex sets, geodesic E -convex functions and E -epigraphs. J. Optim. Theory Appl. 55 (2012) 239–251. | MR | Zbl | DOI

[5] J. B. Jian, On ( E , F ) generalized convexity. Int. J. Math. Sci. 2 (2003) 121–132. | MR | Zbl

[6] J. B. Jian, Incorrect results for E -convex functions and E -convex programming. Math. Res. Exposition 23 (2003) 461–466. | MR | Zbl

[7] A. Kashuri, R. P. Agarwal, P. O. Mohammed, K. Nonlaopon, K. M. Abualnaja and Y. S. Hamed, New generalized class of convex functions and some related integral inequalities. Symmetry 14 (2022) 722. | DOI

[8] A. Kılıçman and W. Saleh, On geodesic strongly E -convex sets and geodesic strongly E -convex functions. J. Inequalities App. 2015 (2015) 1–10. | MR | Zbl

[9] S. N. Majeed, On strongly E-convex sets and strongly E-convex cone sets. J. AL-Qadisiyah Comput. Sci. Math. 11 (2019) 52–59.

[10] S. N. Majeed and M. I. Abd Al-Majeed, On convex functions, E-convex functions and their generalizations: applications to non-linear optimization problems. Int. J. Pure Appl. Math. 116 (2017) 655–673.

[11] T. Rapcsák, Smooth Nonlinear Optimization in 𝐑 n . Vol. 19. Springer Science and Business Media (2013). | MR | Zbl

[12] S. K. Sahoo, R. P. Agarwal, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon and K. M. Abualnaja, Hadamard-Mercer, Dragomir–Agarwal–Mercer, and Pachpatte-Mercer type fractional inclusions for convex functions with an exponential kernel and their applications. Symmetry 14 (2022) 836. | DOI

[13] W. Saleh, Some properties of geodesic strongly Eb-vex functions. Int. J. Anal. App. 17 (2019) 388–395. | Zbl

[14] W. Saleh, On some characterizations of ( s , E ) -convex functions in the fourth sense. J. Contemporary Appl. Math. 12 (2022) 1–30. | Zbl

[15] M. Z. Sarikaya and K. Ozcelik, On Hermite-Hadamard type integral inequalities for strongly ϕ h -convex functions. Preprint (2012). | arXiv | MR

[16] A. A. Shaikh, A. Iqbal and C. K. Mondal, Some results on φ-convex functions and geodesic φ-convex functions. Differ. Geom.-Dyn. Syst. 20 (2018) 159–169. | MR | Zbl

[17] M. Soleimani-Damaneh, E -convexity and its generalizations. Int. J. Comput. Math. 88 (2011) 3335–3349. | MR | Zbl | DOI

[18] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu and B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Int. J. Comput. Intell. Syst. 15 (2022) 1–12. | DOI

[19] S. K. Suneja, C. S. Lalitha and M. G. Govil, E -convex and related functions. Int. J. Manage. Syst. 102 (2002) 439–450.

[20] Y. R. Syau and E. S. Lee, Some properties of E -convex functions. Appl. Math. Lett. 18 (2005) 1074–1080. | MR | Zbl | DOI

[21] C. Udrişte, Convex Funcions and Optimization Methods on Riemannian Manifolds. Kluwer Academic (1994). | MR | Zbl | DOI

[22] E. A. Youness, E -convex sets, E -convex functions, and E -convex programming. J. Optim. Theory App. 102 (1999) 439–450. | MR | Zbl | DOI

[23] S. Yu, P. O. Mohammed, L. Xu and T. Du, An improvement of the power-mean integral inequality in the frame of fractal space and certain related midpoint-type integral inequalities. FRACTALS (fractals) 30 (2022) 1–23. | Zbl

Cité par Sources :