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HERMITE-HADAMARD TYPE INEQUALITY FOR (E, F)-CONVEX
FUNCTIONS AND GEODESIC (E, F)-CONVEX FUNCTIONS

WEDAD SALEH*

Abstract. The main aim of the present paper is to introduce geodesic (F, F')-convex sets and geodesic
(E, F)-functions on a Riemannian manifold. Furthermore, some basic properties of these mappings are
investigated. Moreover, the Hadamard-type inequalities for (E, F')-convex functions are proven.
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1. INTRODUCTION

Convex optimization has an increasing impact on many areas of mathematics, practical applications, and
applied sciences. The idea of convexity has been developed and generalized in numerous directions due to its
uses and significance, see [1,10,19,20]. E-convexity of sets and functions was introduced in 1999 [22].

Many other researchers are studied further, improved, generalized, and extended F-conexity such as E-convex
hull, E-convex cone, E-affine sets, semi semi E-convex For more results on E-convexity see e.g., [1,3,9,10,17,20].
Also, E-convex sets and functions are extended to another class called (F, F')-convex sets and (FE, F')-convex
functions [5, 6].

The geodesic convexity was introduced in [11,21]. Moreover, geodesic E-convex sets and geodesic E-convex
functions were introduced on Riemannian manifolds in [4].

2. NOTATIONS AND PRELIMINARIES

In this section, some definitions and known results of convex, E-convex and (E, F')-functions in real numbers
sets are presented. Also, geodesic convex, geodesic E-convex functions and some results about Riemannian
manifolds, which will be used throughout the paper, are given.

Definition 2.1. Let U C R be an interval, then f: U — R is called convex if
f(tw1 + (1 — t)wg) < tf(wl) + (1 — t)f(wg), Vwi,we €U, t€ [O, 1] (21)
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Definition 2.2. A function E : [wy,ws] — [w1,ws] where [wy,ws] € R. A function f : [wy,ws] — R is called
an F-convex function is

JRE(u) + (1 =) E(p2)) < tf(E(u1)) + (1 =) f(E(p2)), Vpr, p2 € [wi,wsl,t € [0,1],
for more results on this kind of function, see [14,22].
Definition 2.3 ([5]). U is called (E, F')-convex set if
tE(w1)+ (1 —1t)F(w2) €U, Ywi,wq €U,te[0,1].
Definition 2.4. A function f is called (F, F')-convex function if U is (F, F')-convex set and
fAE(wr) + (1 = 1) F(ws)) < tf(E(w1)) + (1 =) f(F(w2)),
Ywi,ws € U and ¢t € [0, 1].
If we replace the space R™ by a Riemannian manifold N. Assume that (N, f) is a complete m-dimensional

Riemannian manifold with Riemannian connection 57. Given a piecewise C! path 7 : [w1,ws] — N joining x
to x2, that is, y(w1) = x2 and y(w2) = x1, the length of v is defined by

)= | ROy A

1

For any two points x1, x2 € IV, we define
d(x1,x2) = inf{L(fy) : v is a piecewise C'' path joining x1 to xg}.

Then d is a metric which induces the original topology on N.

Every Riemannian manifold there is a unique determined Riemannian connection, called a Levi-Civita con-
nection, denoted by /4, A2, for any vector fields A;, A; € N. Also, a smooth path « is a geodesic if and only if
its tangent vector is a parallel vector field along the path =, i.e., v satisfies the equation 7,7 = 0. Any path v
joining wq and wy in N such that L(y) = d(wy,ws) is a geodesic and is called a minimal geodesic. Finally, let N
as a C'*° complete n-dimensional Riemannian manifold with metric g and Levi-Civita connection 7. Moreover,
considering that the points wi,ws € N and 7: [0,1] — N is a geodesic joining wq,wa, @.€., Yu, w,(0) = w2 and
'_le,wz(l) = w1
Definition 2.5 ([21]). A set U is totally convex if U contains every geodesic 7., ., of N whose end points w;
and wy are in U.

Definition 2.6 ([21]). A subset U C N is called totally convex if and only if U contains every geodesic Y, w,
of N whose endpoints w; and ws are in U.

Definition 2.7 ([21]). A function f: U C N — R is called geodesic convex if and only if for all geodesic arcs
Vo ws > Then
F(orwp (1) S tf(w1) + (1= 1) f(w2)

for each wy,wy € U and t € [0, 1].

The notion of a geodesic E-convex function on a complete Riemannian manifold has been discussed in
[4,8,13,14,16].
Definition 2.8 ([4]). A set U C N is geodesic E-convex where E : N — N, iff there exists a unique geodesic
YE(w1),E(ws)(t) of length d(w1,ws) which belong to U for every wi,ws; € U and t € [0, 1].

Definition 2.9 ([4]). A function f: U — R is called geodesic E-convex if U is geodesic E-convex set and
f(’YE(wl),E(wg)) < tf(E(wl)) + (1 - t)f(E(w2))? Ywi,we € Uyt € [0’ 1]'

The next section is devoted to the study of some properties of (E,F)-convex functions like Hermite-
Hadamard-type inequalities. In Section 4, the concepts of geodesic (E, F')-convex set and geodesic (E, F')-convex
function on N are introduced. Also, some properties of the geodesic (E, F')-convex function are given.
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3. SOME PROPERTIES OF (F, F')-CONVEX FUNCTIONS

The Hadamard-type inequality for E-convex given in [15] is as follows:

Theorem 3.1. Assume that E : J C R — R is a continuous increasing function and assume that wi,ws € J
with w1 < wy. Assume that f: U CR — R is an E-convex function on [wi,ws], then

w1 w2 E(w2) w1 w2
f<E( S >>_E(w2)iE(w1)/ L

B(w1) 2
Publications [2,7,12,18,23] are recommended for readers interested in generalizations of the Hadamard-type
inequality.
Now, we present the Hermite-Hadamard-type inequalities for (E, F')-convex as follows:

Theorem 3.2. Assume that E,F : J C R — R are continuous increasing functions and assume that wy,ws €
J with wy < wy. Assume that f : U CR — R is an (E, F)-convez function on w1, ws], then

f<E(W1) ; F(M)) = F(ws) i E(w1) /EI(D:)Q) flo)da < HE) ;f(F(M))' (3:-1)
Proof. Since f is (E, F)-convex function, then
fAE(w1) + (1 =) F(w2)) < tf(E(w1)) + (1 = 1) f(F(w2)), Vwi,wp €Ut €[0,1]. (3.2)
Put ¢ = £, then
f(E(m);F(wz)) _ f(tE(wl) + (; —t)F(wa) n (1 *t)E(w;) +tF(W2)>
< %[f(tE(wl) + (1 =) F(w2)) + f(1 — ) E(wr) + tF(w2))]. (3.3)

Integrating both sides of ( 3.3) with respect to ¢ over (0,1), it follows that

f<E<‘”>;F(°”>) < { / (B + (1 P (ws))dt + / CH( - B(n) + P (wn)) dt]-

In the first integral, we put z = tE(w1) + (1 —t) F(w2) and in the second integral we also put z = (1—¢)F(w;)+
tF(ws), then

E(wi) + F(w2) 1 F(w2)
f( 2 ) = F(ws) - E(wn) /E(wl) J(x)de. (3.4)

Now, we prove the second inequality of (3.1) by integrating both sides of the inequality (3.2) with respect to ¢
over (0, 1), then we obtain

1
| B + (1 = OF @)t < SAE@) + 1(F)L
Let x = tE(w1) + (1 — t)F(w2), then
F(wz)
T B Ju,, (@ < 5 E@) + SF ) (35)

From inequalities (3.4) and (3.5), we get the result. O
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Theorem 3.3. Assume that f : U — R is (E, F )-convex function on U, then the following inequality holds
1 F(wz) 1
Flws) + B(wy) /E(M) F@)f(E(w) + Flws) = z) dz < Z[f*(B@n) + [*(F(ws))]
42 (B f(F(@2).

1] (3.6)

Proof. Since f is (E, F')-convex function, then
1]. (3.7)

F(EB(wr) + (1 — ) F(ws)) < tf(B(w
F(1 =) B(w1) + tF () < (1 = ) f(E(wr)) + L (Fws

1))+ (1 =t)f(Fw2)), Ywi,ws €U,t €0,
), Vwi,ws € U,t €0,

Multiplying both sides of (3.6) by (3.7), we have

FE(wr) + (1 =) F(w2)) f(1 = 1) E(w1) + tF(w2))
< EF(Bw1)f(Fwa)) + (1= 1) f(E(w1)) f(F(w2))

+t(1 =) f*(B(w ))+t(1—t)f2(F( 2))
= t(1 = )[f(B(w1) + F2(Fw2)] + (8 + (1 = 1)*) f(B(w1)) £ (F(w2)). (3-8)

Integration inequality (3.8) with respect to ¢ over (0, 1), then

1
/ FRE(w) + (1= ) F(w2)) f((1 = 1) B(w1) + tF(w2)) dt < = [f*(B(wr)) + f2(F(w2))]

S| =

(3.9)
O

FE(w)f(F(w2))-

Wl N

+

+ (1= ) F(ws).

We get the result if we put z = tE(w1)
U — R are (E, F)-convex functions, then the following

Theorem 3.4. Assume that f1 : U — R and f; :

inequality holds:
Nf2(E(w1)) + fi(F(w2)) f2(F(w2))

F(w2)

Ji(z) fo(z) dz < f1(E(w

3
F(w2) — E(w1) /E(wl)
+ S A EE) f(F @) + A(F@) (B w)]

Proof. Since f; and fo are (E, F')-convex functions, then
fl(tE(wl) + (1 — t)F(OJQ)) < tfl(E(wl)) + (1 — t)fl(F(w2)>, Vwi,we € U,t € [0, 1] (310)
fo(I = ) E(wr) + tF(w2)) < (1 = 1) fa(E(w1)) + tfo(F(w2)), Vwi,we € U,t € [0,1]. (3.11)
Multiplying both sides of (3.10) by (3.11), we have
F(tE(wn) + (1= )F(w2)) fo((1 — D E(wr) + tF(w2)
< fi(B(w)) f2(F(w2)) + (1= 1)* fi(E(w2)) fo (F(w2))
(3.12)

+ (1 = )[f(E(w1)) f2(F(w2)) + f1(F(w2)) fa(E(w1))]:

Integration inequality (3.12) with respect to ¢ over (0, 1), then
[f1(E(w1)) f2(E(w1)) + f1(F(w2)) f2(F(w2))]

w2)) f2(E(w1))]-
(]

OJ\’—‘

1
/ FLEE(n) + (1~ ) F(w2)) (1 — ) E(wr) + tF(ws)) dt
+ 2B a(F () + fi(F(

If we put = tFE(w1) + (1 — t) F(w2), we get the result.
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4. GEODESIC(F, F')-CONVEX FUNCTIONS

In this section, we introduce a new geodesic convexity on a Riemannian manifold that is called a geodesic
(E, F)-convex function and study some of its properties.

Definition 4.1. Assume that E,F': N — N are two mappings. A subset U of N is called geodesic (E, F)-
convex iff there exists a unique geodesic Yg(w,),7(w,)(t) of length d(wy,ws), which belongs to U, Vw;,ws € U
and ¢ € [0,1].

Proposition 4.2. If a set U is geodesic (E,F )-convez set. Then, E(U) CU and F(U) CU.

Proof. Since U is geodesic (E, F')-convex set, then Yg(u,),p(w,)(t) € U,Vwi,ws € U and ¢ € [0,1]. When t = 1,
then we have E(w;) € wy, i.e., E(U) C U. Also, when t = 0, then we have F(w2) € U, i.e., F(U) CU. O

Proposition 4.3. If E(U)U F(U) is convex and E(U)U F(U) C U, then U is geodesic (E, F )-convez.

Proof. Let wy,ws € U, then E(w), F(w1) € E(U)UF(U). Since E(U)UF (U) are convex, then gy, p(w,)(t) €
E(U)UF(U) CU,Vt € [0,1], that means U is geodesic (E, F')-convex. O

Example 4.4. Assume that U is given as in Figure 1, F is a mapping from U to white cat and F' is a mapping
from U to black cat. Then U is neither geodesic E-convex nor geodesic F-convex, since there is wi,ws € U
where Yg(w,),B(w.)(t) & U, also Yp(w,),F(ws)(t) & U, on the other hand yg(w,), f(ws)(t) € U,Vwi,ws € U which
gives that U is geodesic (E, F')-convex.

Theorem 4.5. If (U;)icr is an arbitrary collection of geodesic (E,F )-convexr subsets of N with respect to
E:N— N and F: N — N, then their intersection N;erU; is a geodesic (E, F )-convex subset of N.

Proof. Assume that (U;);cr is a collection of geodesic (F, F)-convex. If N;c;U; = ¢, then the result is obvious.
Now, let wi,ws € NierUs, then wi,wy € U, Vi. Hence, Yg(w,),F(w.)(t) € Ui, Vi,t € [0,1], which implies that
VE(wr),F(ws)(t) € NierUs, t € [0,1]. U

Remark 4.6. The above theorem is not true in general for the union of geodesic (E, F')-convex sunsets of N.

Lemma 4.7. Assume that U C N s geodesic (Ey, Fy)-convex and geodesic (Ey,Fy)-conver set. Then U is
geodesic (Ey o Ea, Fy o Fy)-convez set.

Proof. Consider U is geodesic (E1, F})-convex and geodesic (Fj, F})-convex subset of N, and wy,wy € U.
Assume, on the contrary, that there is ¢ € [0, 1] such that ¥(g, o) (w,),(Frof) (W) (t) & U. Put p1 = Ea(w1),p2 =
F3(w2), then by Proposition 4.2, we have p1,p2 € U, that is Vg, (p,),F (p,)(t) € U which is contradicts the
assumption. Hence, U is geodesic (E; o Ea, F} o Fy)-convex set. O

Definition 4.8. Assume that U XRC N xR, E,F: N — N and E*, F* : R — R. The set U x R is called
geodesic (E, F) x (E*, F*)-convex, if

(VB Fr) (), LE (w2) + (1 =) F*(12)) € U x R
V(wi,we), (11,72) €U x R and t € [0, 1].
A characterization between geodesic (E, F)-convex of U C N and U x R is given in the next proposition.

Proposition 4.9. A is geodesic (E, F )-convez iff U x R is geodesic (E, F) x (E*, F*)-convex
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FIGURE 1. U is a geodesic (E, F')-convex set.

Proof. For all wy, 7 € U,wz, 72 € Rand t € [0,1], we have yg(w,),p(r)(t) € U and tE* (wa) + (1 — 1) F*(72) € R.
Hence,

(’YE(wl),F(Tl)(t)vtE*(w2) + (1 — t)F*(TQ)) e U x R,

then U x R is geodesic (F,F) x (E* F*)-convex. By using the same method, we can obtain other
direction. 0

The following definition is generalized from the definition of (E, F')-convex function which is called a geodesic
(E, F)-convex function on a geodesic (E, F')-convex sumset of a Riemannian manifold.

Definition 4.10. Let U C N be a geodesic (E, F')-convex set. A real-valued function f : U — R is called a
geodesic (E, F)-convex function iff

(VB Fw) (1) S tF(E(w1)) + (1 = 1) f(F(w2)), Ywi,ws € U, t € [0,1]. (4.1)

If the inequality above is strict Ywy,ws € U, E(wy) # F(ws) for all ¢ € [0, 1], then f is called strictly geodesic
(E, F)-convex.
The following remark shows that some special cases of the geodesic (E, F')-convex function.

Remark 4.11. (1) If N is 1-dimension Eucledian space, then f is called (E, F')-convex function [5].
(2) If E = F, then f is called geodesic E-convex function [4].
(3) If E = F =1, then f is called geodesic convex function [21].

Example 4.12. Counsider the function f: R — R where

2, ifae]0,2],
flz) = { 1, if otherwise.

Let E,F : R — R be given as F(w;) = 0 and F(w;) = 1. Assume the geodesic v is defined as

_ Jwa +t(wr —we), ifab>0,
VB (). F(ws) (E) = {m tt(ws —w1), ifab<0,

where t € (0,1). Then,
F(VB@1), Flws) < [(F(w2) + H(E(w1) — F(w2))),

Vw1, ws € R, hence f is geodesic (E, F')-convex function.

Next, some properties of geodesic (E, F')-convex functions are given which remain U C N is geodesic (F, F')-
convex set unless we mention otherwise.

Theorem 4.13. If f; : N — R,i=1,2,...,m are geodesic (E, F )-convex functions. Then, f =Y " n;f; is
geodesic (E, F)-convex function on U, Vn; € Ryn; > 0,i=1,2,...,m.
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Proof. Since f; are geodesic (F, F')-convex functions for all ¢, then

F (VB P ) S HB@D) + (L= Dfi(F(w2), Vit e [01],

then
0 (VB Fon) ) S tifi(B(wn)) + (1= )i fi( F(w2))
or
S0 (Ve pen ) Y mF(B@) + (1= 1) Y mifi( F(ws)).
i=1 =1 =1
That is the result. (]

Proposition 4.14. Assume that f; : U — R, Vi € I is a family of above-bounded and geodesic (E, F )-convex
function on U. Then the function f : U — R which is defined as f(w1) = sup;e; filw1) is also geodesic
(E, F)-convez function on U.

Proof. For all wi,ws € U and t € [0, 1], we have
F(VB@) Flw) (t) = sup Fi(VB(1). Fw) (1)
< Sll}p(tfi(E(wl)) + (1 =t)fi(F(w2)))
= tsup fi(E(w1)) + (1 —1) sup fi(F(w2)),
= tf(E(w1)) + (1 = ) f(F(w2)).
Hence, f is a geodesic (E, F)-convex function. 0

Proposition 4.15. Assume that f is geodesic (E, F')-convez function onU and H : R — R is a non-decreasing
convex function, then Hof is a geodesic (E,F )-convex function on U.

Proof. From the assumption

(VB Pon ) SUE@)) + (1= OF(F(w2), Ve [0,1].

Now,
(Hof) (o, pen) ) < HO(F(E(D) + (1= )f(Fw2)), vt € [0,1]

Since H is non-decreasing convex, then
(Hof) (Vp,0yy o) < HHOP)(B(wr)) + (1 = 1)(Hof )(F(w)),

that means Hof is geodesic (E, F')-convex function on U. O

Theorem 4.16. If f : U — R is a geodesic (E,F)-convex function on U, then the level set G, =
{w:w e, f(w) < u} is geodesic (E, F )-convex for each i € R.

Proof. Since f is geodesic (E, F')-convex function on U, for all wy,ws € U, we have F(wy), F(wy) € U
(B peon ) S U E@)) + (1= OF (Fw2)) < tu+ (L= = p,
this implies that Yg(w,),F(w,) € Gu and G, is geodesic (E, F')-convex set. O

Corollary 4.17. Assume that f; : U — R are geodesic (E,F )-convex functions on U, then the set G =
{w:wel, fi(w) <0,Yi} is geodesic (E, F )-convez.

The proof of this corollary is directly from Proposition 4.2 and Theorem 4.16.
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5. CONCLUSIONS

In this work, geodesic (E, F')-convex sets and geodesic (E, F')-functions on Riemannian manifold are intro-
duced. Some properties of this type of convexity are established.
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