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HERMITE–HADAMARD TYPE INEQUALITY FOR (𝐸, 𝐹 )-CONVEX
FUNCTIONS AND GEODESIC (𝐸, 𝐹 )-CONVEX FUNCTIONS

Wedad Saleh*

Abstract. The main aim of the present paper is to introduce geodesic (𝐸, 𝐹 )-convex sets and geodesic
(𝐸, 𝐹 )-functions on a Riemannian manifold. Furthermore, some basic properties of these mappings are
investigated. Moreover, the Hadamard-type inequalities for (𝐸, 𝐹 )-convex functions are proven.
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1. Introduction

Convex optimization has an increasing impact on many areas of mathematics, practical applications, and
applied sciences. The idea of convexity has been developed and generalized in numerous directions due to its
uses and significance, see [1, 10,19,20]. 𝐸-convexity of sets and functions was introduced in 1999 [22].

Many other researchers are studied further, improved, generalized, and extended 𝐸-conexity such as 𝐸-convex
hull, 𝐸-convex cone, 𝐸-affine sets, semi semi 𝐸-convex For more results on 𝐸-convexity see e.g., [1,3,9,10,17,20].
Also, 𝐸-convex sets and functions are extended to another class called (𝐸,𝐹 )-convex sets and (𝐸,𝐹 )-convex
functions [5, 6].

The geodesic convexity was introduced in [11, 21]. Moreover, geodesic 𝐸-convex sets and geodesic 𝐸-convex
functions were introduced on Riemannian manifolds in [4].

2. Notations and preliminaries

In this section, some definitions and known results of convex, 𝐸-convex and (𝐸,𝐹 )-functions in real numbers
sets are presented. Also, geodesic convex, geodesic 𝐸-convex functions and some results about Riemannian
manifolds, which will be used throughout the paper, are given.

Definition 2.1. Let 𝑈 ⊆ R be an interval, then 𝑓 : 𝑈 −→ R is called convex if

𝑓(𝑡𝜔1 + (1− 𝑡)𝜔2) ≤ 𝑡𝑓(𝜔1) + (1− 𝑡)𝑓(𝜔2), ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1]. (2.1)

Keywords. (𝐸, 𝐹 )-convex functions, geodesic convex functions, geodesic convex sets, geodesic 𝐸-convex functions, Riemannian
manifolds.

Department of Mathematics, Taibah University, Al-Medina, Saudi Arabia.
*Corresponding author: wlehabi@taibahu.edu.sa

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022185
https://www.rairo-ro.org
mailto:wlehabi@taibahu.edu.sa
https://creativecommons.org/licenses/by/4.0


4182 W. SALEH

Definition 2.2. A function 𝐸 : [𝜔1, 𝜔2] −→ [𝜔1, 𝜔2] where [𝜔1, 𝜔2] ⊆ R. A function 𝑓 : [𝜔1, 𝜔2] −→ R is called
an 𝐸-convex function is

𝑓(𝑡𝐸(𝜇1) + (1− 𝑡)𝐸(𝜇2)) ≤ 𝑡𝑓(𝐸(𝜇1)) + (1− 𝑡)𝑓(𝐸(𝜇2)), ∀𝜇1, 𝜇2 ∈ [𝜔1, 𝜔2], 𝑡 ∈ [0, 1],

for more results on this kind of function, see [14,22].

Definition 2.3 ([5]). 𝑈 is called (𝐸,𝐹 )-convex set if

𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2) ∈ 𝑈, ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1].

Definition 2.4. A function 𝑓 is called (𝐸,𝐹 )-convex function if 𝑈 is (𝐸,𝐹 )-convex set and

𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)) ≤ 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2)),

∀𝜔1, 𝜔2 ∈ 𝑈 and 𝑡 ∈ [0, 1].

If we replace the space R𝑛 by a Riemannian manifold 𝑁 . Assume that (𝑁, 𝑓) is a complete 𝑚-dimensional
Riemannian manifold with Riemannian connection ▽. Given a piecewise 𝐶1 path 𝛾 : [𝜔1, 𝜔2] −→ 𝑁 joining 𝜒1

to 𝜒2, that is, 𝛾(𝜔1) = 𝜒2 and 𝛾(𝜔2) = 𝜒1, the length of 𝛾 is defined by

𝐿(𝛾) =
∫︁ 𝑢2

𝑢1

‖𝛾(𝜆)‖𝛾(𝜆) d𝜆.

For any two points 𝜒1, 𝜒2 ∈ 𝑁 , we define

𝑑(𝜒1, 𝜒2) = inf
{︀
𝐿(𝛾) : 𝛾 is a piecewise 𝐶1 path joining 𝜒1 to 𝜒2

}︀
.

Then 𝑑 is a metric which induces the original topology on 𝑁 .
Every Riemannian manifold there is a unique determined Riemannian connection, called a Levi-Civita con-

nection, denoted by ▽𝐴1𝐴2, for any vector fields 𝐴1, 𝐴2 ∈ 𝑁 . Also, a smooth path 𝛾 is a geodesic if and only if
its tangent vector is a parallel vector field along the path 𝛾, i.e., 𝛾 satisfies the equation ▽𝛾′𝛾′ = 0. Any path 𝛾
joining 𝜔1 and 𝜔2 in 𝑁 such that 𝐿(𝛾) = 𝑑(𝜔1, 𝜔2) is a geodesic and is called a minimal geodesic. Finally, let 𝑁
as a 𝐶∞ complete 𝑛-dimensional Riemannian manifold with metric 𝑔 and Levi-Civita connection ▽. Moreover,
considering that the points 𝜔1, 𝜔2 ∈ 𝑁 and 𝛾 : [0, 1] −→ 𝑁 is a geodesic joining 𝜔1, 𝜔2, i.e., 𝛾𝜔1,𝜔2(0) = 𝜔2 and
𝛾𝜔1,𝜔2(1) = 𝜔1.

Definition 2.5 ([21]). A set 𝑈 is totally convex if 𝑈 contains every geodesic 𝛾𝜔1,𝜔2 of 𝑁 whose end points 𝜔1

and 𝜔2 are in 𝑈 .

Definition 2.6 ([21]). A subset 𝑈 ⊆ 𝑁 is called totally convex if and only if 𝑈 contains every geodesic 𝛾𝜔1,𝜔2

of 𝑁 whose endpoints 𝜔1 and 𝜔2 are in 𝑈 .

Definition 2.7 ([21]). A function 𝑓 : 𝑈 ⊂ 𝑁 −→ R is called geodesic convex if and only if for all geodesic arcs
𝛾𝜔1,𝜔2 , then

𝑓(𝛾𝜔1,𝜔2(𝑡)) ≤ 𝑡𝑓(𝜔1) + (1− 𝑡)𝑓(𝜔2)

for each 𝜔1, 𝜔2 ∈ 𝑈 and 𝑡 ∈ [0, 1].

The notion of a geodesic 𝐸-convex function on a complete Riemannian manifold has been discussed in
[4, 8, 13,14,16].

Definition 2.8 ([4]). A set 𝑈 ⊂ 𝑁 is geodesic 𝐸-convex where 𝐸 : 𝑁 −→ 𝑁 , iff there exists a unique geodesic
𝛾𝐸(𝜔1),𝐸(𝜔2)(𝑡) of length 𝑑(𝜔1, 𝜔2) which belong to 𝑈 for every 𝜔1, 𝜔2 ∈ 𝑈 and 𝑡 ∈ [0, 1].

Definition 2.9 ([4]). A function 𝑓 : 𝑈 −→ R is called geodesic 𝐸-convex if 𝑈 is geodesic 𝐸-convex set and

𝑓(𝛾𝐸(𝜔1),𝐸(𝜔2)) ≤ 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐸(𝜔2)), ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1].

The next section is devoted to the study of some properties of (𝐸,𝐹 )-convex functions like Hermite–
Hadamard-type inequalities. In Section 4, the concepts of geodesic (𝐸,𝐹 )-convex set and geodesic (𝐸,𝐹 )-convex
function on 𝑁 are introduced. Also, some properties of the geodesic (𝐸,𝐹 )-convex function are given.
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3. Some properties of (𝐸,𝐹 )-convex functions

The Hadamard-type inequality for 𝐸-convex given in [15] is as follows:

Theorem 3.1. Assume that 𝐸 : 𝐽 ⊆ R −→ R is a continuous increasing function and assume that 𝜔1, 𝜔2 ∈ 𝐽
with 𝜔1 < 𝜔2. Assume that 𝑓 : 𝑈 ⊆ R −→ R is an 𝐸-convex function on [𝜔1, 𝜔2], then

𝑓

(︂
𝐸(𝜔1) + 𝐸(𝜔2)

2

)︂
≤ 1

𝐸(𝜔2)− 𝐸(𝜔1)

∫︁ 𝐸(𝜔2)

𝐸(𝜔1)

𝑓(𝐸(𝑡)) d𝐸(𝑡) ≤ 𝑓(𝐸(𝜔1)) + 𝑓(𝐸(𝜔2))
2

·

Publications [2,7,12,18,23] are recommended for readers interested in generalizations of the Hadamard-type
inequality.

Now, we present the Hermite–Hadamard-type inequalities for (𝐸,𝐹 )-convex as follows:

Theorem 3.2. Assume that 𝐸,𝐹 : 𝐽 ⊆ R −→ R are continuous increasing functions and assume that 𝜔1, 𝜔2 ∈
𝐽 with 𝜔1 < 𝜔2. Assume that 𝑓 : 𝑈 ⊆ R −→ R is an (𝐸,𝐹 )-convex function on [𝜔1, 𝜔2], then

𝑓

(︂
𝐸(𝜔1) + 𝐹 (𝜔2)

2

)︂
≤ 1

𝐹 (𝜔2)− 𝐸(𝜔1)

∫︁ 𝐹 (𝜔2)

𝐸(𝜔1)

𝑓(𝑥) d𝑥 ≤ 𝑓(𝐸(𝜔1)) + 𝑓(𝐹 (𝜔2))
2

· (3.1)

Proof. Since 𝑓 is (𝐸,𝐹 )-convex function, then

𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)) ≤ 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2)), ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1]. (3.2)

Put 𝑡 = 1
2 , then

𝑓

(︂
𝐸(𝜔1) + 𝐹 (𝜔2)

2

)︂
= 𝑓

(︂
𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)

2
+

(1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2)
2

)︂
≤ 1

2
[𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)) + 𝑓((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2))]. (3.3)

Integrating both sides of ( 3.3) with respect to 𝑡 over (0, 1), it follows that

𝑓

(︂
𝐸(𝜔1) + 𝐹 (𝜔2)

2

)︂
≤ 1

2

[︂∫︁ 1

0

𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)) d𝑡 +
∫︁ 1

0

𝑓((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2)) d𝑡

]︂
.

In the first integral, we put 𝑥 = 𝑡𝐸(𝜔1)+(1− 𝑡)𝐹 (𝜔2) and in the second integral we also put 𝑥 = (1− 𝑡)𝐸(𝜔1)+
𝑡𝐹 (𝜔2), then

𝑓

(︂
𝐸(𝜔1) + 𝐹 (𝜔2)

2

)︂
≤ 1

𝐹 (𝜔2)− 𝐸(𝜔1)

∫︁ 𝐹 (𝜔2)

𝐸(𝜔1)

𝑓(𝑥) d𝑥. (3.4)

Now, we prove the second inequality of (3.1) by integrating both sides of the inequality (3.2) with respect to 𝑡
over (0, 1), then we obtain∫︁ 1

0

𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)) d𝑡 ≤ 1
2

[𝑓(𝐸(𝜔1)) + 𝑓(𝐹 (𝜔2))].

Let 𝑥 = 𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2), then

1
𝐹 (𝜔2)− 𝐸(𝜔1)

∫︁ 𝐹 (𝜔2)

𝐸(𝜔1)

𝑓(𝑥) d𝑥 ≤ 1
2

[𝑓(𝐸(𝜔1)) + 𝑓(𝐹 (𝜔2))]. (3.5)

From inequalities (3.4) and (3.5), we get the result. �
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Theorem 3.3. Assume that 𝑓 : 𝑈 −→ R is (𝐸,𝐹 )-convex function on 𝑈 , then the following inequality holds:

1
𝐹 (𝜔2) + 𝐸(𝜔1)

∫︁ 𝐹 (𝜔2)

𝐸(𝜔1)

𝑓(𝑥)𝑓(𝐸(𝜔1) + 𝐹 (𝜔2)− 𝑥) d𝑥 ≤ 1
6
[︀
𝑓2(𝐸(𝜔1)) + 𝑓2(𝐹 (𝜔2))

]︀
+

2
3
𝑓(𝐸(𝜔1))𝑓(𝐹 (𝜔2)).

Proof. Since 𝑓 is (𝐸,𝐹 )-convex function, then

𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)) ≤ 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2)), ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1] (3.6)
𝑓((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2)) ≤ (1− 𝑡)𝑓(𝐸(𝜔1)) + 𝑡𝑓(𝐹 (𝜔2)), ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1]. (3.7)

Multiplying both sides of (3.6) by (3.7), we have

𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2))𝑓((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2))
≤ 𝑡2𝑓(𝐸(𝜔1))𝑓(𝐹 (𝜔2)) + (1− 𝑡)2𝑓(𝐸(𝜔1))𝑓(𝐹 (𝜔2))

+ 𝑡(1− 𝑡)𝑓2(𝐸(𝜔1)) + 𝑡(1− 𝑡)𝑓2(𝐹 (𝜔2))
= 𝑡(1− 𝑡)

[︀
𝑓2(𝐸(𝜔1)) + 𝑓2(𝐹 (𝜔2))

]︀
+

(︀
𝑡2 + (1− 𝑡)2

)︀
𝑓(𝐸(𝜔1))𝑓(𝐹 (𝜔2)). (3.8)

Integration inequality (3.8) with respect to 𝑡 over (0, 1), then∫︁ 1

0

𝑓(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2))𝑓((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2)) d𝑡 ≤ 1
6
[︀
𝑓2(𝐸(𝜔1)) + 𝑓2(𝐹 (𝜔2))

]︀
+

2
3
𝑓(𝐸(𝜔1))𝑓(𝐹 (𝜔2)). (3.9)

We get the result if we put 𝑥 = 𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2). �

Theorem 3.4. Assume that 𝑓1 : 𝑈 −→ R and 𝑓1 : 𝑈 −→ R are (𝐸,𝐹 )-convex functions, then the following
inequality holds:

3
𝐹 (𝜔2)− 𝐸(𝜔1)

∫︁ 𝐹 (𝜔2)

𝐸(𝜔1)

𝑓1(𝑥)𝑓2(𝑥) d𝑥 ≤ 𝑓1(𝐸(𝜔1))𝑓2(𝐸(𝜔1)) + 𝑓1(𝐹 (𝜔2))𝑓2(𝐹 (𝜔2))

+
1
2

[𝑓1(𝐸(𝜔1))𝑓2(𝐹 (𝜔2)) + 𝑓1(𝐹 (𝜔2))𝑓2(𝐸(𝜔1))].

Proof. Since 𝑓1 and 𝑓2 are (𝐸,𝐹 )-convex functions, then

𝑓1(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2)) ≤ 𝑡𝑓1(𝐸(𝜔1)) + (1− 𝑡)𝑓1(𝐹 (𝜔2)), ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1] (3.10)
𝑓2((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2)) ≤ (1− 𝑡)𝑓2(𝐸(𝜔1)) + 𝑡𝑓2(𝐹 (𝜔2)), ∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1]. (3.11)

Multiplying both sides of (3.10) by (3.11), we have

𝑓1(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2))𝑓2((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2))
≤ 𝑡2𝑓1(𝐸(𝜔1))𝑓2(𝐹 (𝜔2)) + (1− 𝑡)2𝑓1(𝐸(𝜔2))𝑓2(𝐹 (𝜔2))

+ 𝑡(1− 𝑡)[𝑓(𝐸(𝜔1))𝑓2(𝐹 (𝜔2)) + 𝑓1(𝐹 (𝜔2))𝑓2(𝐸(𝜔1))]. (3.12)

Integration inequality (3.12) with respect to 𝑡 over (0, 1), then∫︁ 1

0

𝑓1(𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2))𝑓2((1− 𝑡)𝐸(𝜔1) + 𝑡𝐹 (𝜔2)) d𝑡 ≤ 1
3

[𝑓1(𝐸(𝜔1))𝑓2(𝐸(𝜔1)) + 𝑓1(𝐹 (𝜔2))𝑓2(𝐹 (𝜔2))]

+
1
6

[𝑓1(𝐸(𝜔1))𝑓2(𝐹 (𝜔2)) + 𝑓1(𝐹 (𝜔2))𝑓2(𝐸(𝜔1))].

If we put 𝑥 = 𝑡𝐸(𝜔1) + (1− 𝑡)𝐹 (𝜔2), we get the result. �
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4. Geodesic(𝐸,𝐹 )-convex functions

In this section, we introduce a new geodesic convexity on a Riemannian manifold that is called a geodesic
(𝐸,𝐹 )-convex function and study some of its properties.

Definition 4.1. Assume that 𝐸,𝐹 : 𝑁 −→ 𝑁 are two mappings. A subset 𝑈 of 𝑁 is called geodesic (𝐸,𝐹 )-
convex iff there exists a unique geodesic 𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡) of length 𝑑(𝜔1, 𝜔2), which belongs to 𝑈 , ∀𝜔1, 𝜔2 ∈ 𝑈
and 𝑡 ∈ [0, 1].

Proposition 4.2. If a set 𝑈 is geodesic (𝐸,𝐹 )-convex set. Then, 𝐸(𝑈) ⊆ 𝑈 and 𝐹 (𝑈) ⊆ 𝑈 .

Proof. Since 𝑈 is geodesic (𝐸,𝐹 )-convex set, then 𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡) ∈ 𝑈,∀𝜔1, 𝜔2 ∈ 𝑈 and 𝑡 ∈ [0, 1]. When 𝑡 = 1,
then we have 𝐸(𝜔1) ∈ 𝜔1, i.e., 𝐸(𝑈) ⊆ 𝑈 . Also, when 𝑡 = 0, then we have 𝐹 (𝜔2) ∈ 𝑈 , i.e., 𝐹 (𝑈) ⊆ 𝑈 . �

Proposition 4.3. If 𝐸(𝑈) ∪ 𝐹 (𝑈) is convex and 𝐸(𝑈) ∪ 𝐹 (𝑈) ⊆ 𝑈 , then 𝑈 is geodesic (𝐸,𝐹 )-convex.

Proof. Let 𝜔1, 𝜔2 ∈ 𝑈 , then 𝐸(𝜔1), 𝐹 (𝜔1) ∈ 𝐸(𝑈)∪𝐹 (𝑈). Since 𝐸(𝑈)∪𝐹 (𝑈) are convex, then 𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡) ∈
𝐸(𝑈) ∪ 𝐹 (𝑈) ⊆ 𝑈,∀𝑡 ∈ [0, 1], that means 𝑈 is geodesic (𝐸,𝐹 )-convex. �

Example 4.4. Assume that 𝑈 is given as in Figure 1, 𝐸 is a mapping from 𝑈 to white cat and 𝐹 is a mapping
from 𝑈 to black cat. Then 𝑈 is neither geodesic 𝐸-convex nor geodesic 𝐹 -convex, since there is 𝜔1, 𝜔2 ∈ 𝑈
where 𝛾𝐸(𝜔1),𝐸(𝜔2)(𝑡) /∈ 𝑈 , also 𝛾𝐹 (𝜔1),𝐹 (𝜔2)(𝑡) /∈ 𝑈 , on the other hand 𝛾𝐸(𝜔1),𝑓(𝜔2)(𝑡) ∈ 𝑈,∀𝜔1, 𝜔2 ∈ 𝑈 which
gives that 𝑈 is geodesic (𝐸,𝐹 )-convex.

Theorem 4.5. If (𝑈𝑖)𝑖∈𝐼 is an arbitrary collection of geodesic (𝐸,𝐹 )-convex subsets of 𝑁 with respect to
𝐸 : 𝑁 −→ 𝑁 and 𝐹 : 𝑁 −→ 𝑁 , then their intersection ∩𝑖∈𝐼𝑈𝑖 is a geodesic (𝐸,𝐹 )-convex subset of 𝑁 .

Proof. Assume that (𝑈𝑖)𝑖∈𝐼 is a collection of geodesic (𝐸,𝐹 )-convex. If ∩𝑖∈𝐼𝑈𝑖 = 𝜑, then the result is obvious.
Now, let 𝜔1, 𝜔2 ∈ ∩𝑖∈𝐼𝑈𝑖, then 𝜔1, 𝜔2 ∈ 𝑈𝑖,∀𝑖. Hence, 𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡) ∈ 𝑈𝑖,∀𝑖, 𝑡 ∈ [0, 1], which implies that
𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡) ∈ ∩𝑖∈𝐼𝑈𝑖, 𝑡 ∈ [0, 1]. �

Remark 4.6. The above theorem is not true in general for the union of geodesic (𝐸,𝐹 )-convex sunsets of 𝑁 .

Lemma 4.7. Assume that 𝑈 ⊆ 𝑁 is geodesic (𝐸1, 𝐹1)-convex and geodesic (𝐸1, 𝐹1)-convex set. Then 𝑈 is
geodesic (𝐸1 ∘ 𝐸2, 𝐹1 ∘ 𝐹2)-convex set.

Proof. Consider 𝑈 is geodesic (𝐸1, 𝐹1)-convex and geodesic (𝐸1, 𝐹1)-convex subset of 𝑁 , and 𝜔1, 𝜔2 ∈ 𝑈 .
Assume, on the contrary, that there is 𝑡 ∈ [0, 1] such that 𝛾(𝐸1∘𝐸2)(𝜔1),(𝐹1∘𝐹2)(𝜔2)(𝑡) /∈ 𝑈 . Put 𝜌1 = 𝐸2(𝜔1), 𝜌2 =
𝐹2(𝜔2), then by Proposition 4.2, we have 𝜌1, 𝜌2 ∈ 𝑈 , that is 𝛾𝐸1(𝜌1),𝐹1(𝜌2)(𝑡) ∈ 𝑈 which is contradicts the
assumption. Hence, 𝑈 is geodesic (𝐸1 ∘ 𝐸2, 𝐹1 ∘ 𝐹2)-convex set. �

Definition 4.8. Assume that 𝑈 × R ⊆ 𝑁 × R, 𝐸,𝐹 : 𝑁 −→ 𝑁 and 𝐸*, 𝐹 * : R −→ R. The set 𝑈 × R is called
geodesic (𝐸,𝐹 )× (𝐸*, 𝐹 *)-convex, if(︀

𝛾𝐸(𝜔1),𝐹 (𝜏1)(𝑡), 𝑡𝐸
*(𝜔2) + (1− 𝑡)𝐹 *(𝜏2)

)︀
∈ 𝑈 × R

∀(𝜔1, 𝜔2), (𝜏1, 𝜏2) ∈ 𝑈 × R and 𝑡 ∈ [0, 1].

A characterization between geodesic (𝐸,𝐹 )-convex of 𝑈 ⊆ 𝑁 and 𝑈 × R is given in the next proposition.

Proposition 4.9. A is geodesic (𝐸,𝐹 )-convex iff 𝑈 × R is geodesic (𝐸,𝐹 )× (𝐸*, 𝐹 *)-convex
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Figure 1. 𝑈 is a geodesic (𝐸,𝐹 )-convex set.

Proof. For all 𝜔1, 𝜏1 ∈ 𝑈, 𝜔2, 𝜏2 ∈ R and 𝑡 ∈ [0, 1], we have 𝛾𝐸(𝜔1),𝐹 (𝜏1)(𝑡) ∈ 𝑈 and 𝑡𝐸*(𝜔2) + (1− 𝑡)𝐹 *(𝜏2) ∈ R.
Hence, (︀

𝛾𝐸(𝜔1),𝐹 (𝜏1)(𝑡), 𝑡𝐸
*(𝜔2) + (1− 𝑡)𝐹 *(𝜏2)

)︀
∈ 𝑈 × R,

then 𝑈 × R is geodesic (𝐸,𝐹 ) × (𝐸*, 𝐹 *)-convex. By using the same method, we can obtain other
direction. �

The following definition is generalized from the definition of (𝐸,𝐹 )-convex function which is called a geodesic
(𝐸,𝐹 )-convex function on a geodesic (𝐸,𝐹 )-convex sumset of a Riemannian manifold.

Definition 4.10. Let 𝑈 ⊆ 𝑁 be a geodesic (𝐸,𝐹 )-convex set. A real-valued function 𝑓 : 𝑈 −→ R is called a
geodesic (𝐸,𝐹 )-convex function iff

𝑓
(︀
𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡)

)︀
≤ 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2)),∀𝜔1, 𝜔2 ∈ 𝑈, 𝑡 ∈ [0, 1]. (4.1)

If the inequality above is strict ∀𝜔1, 𝜔2 ∈ 𝑈, 𝐸(𝜔1) ̸= 𝐹 (𝜔2) for all 𝑡 ∈ [0, 1], then 𝑓 is called strictly geodesic
(𝐸,𝐹 )-convex.

The following remark shows that some special cases of the geodesic (𝐸,𝐹 )-convex function.

Remark 4.11. (1) If 𝑁 is 1-dimension Eucledian space, then 𝑓 is called (𝐸,𝐹 )-convex function [5].
(2) If 𝐸 = 𝐹 , then 𝑓 is called geodesic 𝐸-convex function [4].
(3) If 𝐸 = 𝐹 = 𝐼, then 𝑓 is called geodesic convex function [21].

Example 4.12. Consider the function 𝑓 : R −→ R where

𝑓(𝑥) =
{︂

2, if 𝑎 ∈ [0, 2],
1, if otherwise.

Let 𝐸,𝐹 : R −→ R be given as 𝐸(𝜔1) = 0 and 𝐹 (𝜔1) = 1
2 . Assume the geodesic 𝛾 is defined as

𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡) =
{︂

𝜔2 + 𝑡(𝜔1 − 𝜔2), if 𝑎𝑏 ≥ 0,
𝜔2 + 𝑡(𝜔2 − 𝜔1), if 𝑎𝑏 < 0,

where 𝑡 ∈ (0, 1). Then,
𝑓(𝛾𝐸(𝜔1),𝐹 (𝜔2)) ≤ 𝑓(𝐹 (𝜔2) + 𝑡(𝐸(𝜔1)− 𝐹 (𝜔2))),

∀𝜔1, 𝜔2 ∈ R, hence 𝑓 is geodesic (𝐸,𝐹 )-convex function.

Next, some properties of geodesic (𝐸,𝐹 )-convex functions are given which remain 𝑈 ⊆ 𝑁 is geodesic (𝐸,𝐹 )-
convex set unless we mention otherwise.

Theorem 4.13. If 𝑓𝑖 : 𝑁 −→ R, 𝑖 = 1, 2, . . . ,𝑚 are geodesic (𝐸,𝐹 )-convex functions. Then, 𝑓 =
∑︀𝑚

𝑖=1 𝜂𝑖𝑓𝑖 is
geodesic (𝐸,𝐹 )-convex function on 𝑈 , ∀𝜂𝑖 ∈ R, 𝜂𝑖 ≥ 0, 𝑖 = 1, 2, . . . ,𝑚.
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Proof. Since 𝑓𝑖 are geodesic (𝐸,𝐹 )-convex functions for all 𝑖, then

𝑓𝑖

(︁
𝛾𝐸(𝜔1),𝐹 (𝜔2)

)︁
≤ 𝑡𝑓𝑖(𝐸(𝜔1)) + (1− 𝑡)𝑓𝑖(𝐹 (𝜔2)), ∀𝑖, 𝑡 ∈ [0, 1],

then
𝜂𝑖𝑓𝑖

(︁
𝛾𝐸(𝜔1),𝐹 (𝜔2)

)︁
≤ 𝑡𝜂𝑖𝑓𝑖(𝐸(𝜔1)) + (1− 𝑡)𝜂𝑖𝑓𝑖(𝐹 (𝜔2))

or
𝑛∑︁

𝑖=1

𝜂𝑖𝑓𝑖

(︁
𝛾𝐸(𝜔1),𝐹 (𝜔2)

)︁
≤ 𝑡

𝑛∑︁
𝑖=1

𝜂𝑖𝑓𝑖(𝐸(𝜔1)) + (1− 𝑡)
𝑛∑︁

𝑖=1

𝜂𝑖𝑓𝑖(𝐹 (𝜔2)).

That is the result. �

Proposition 4.14. Assume that 𝑓𝑖 : 𝑈 −→ R,∀𝑖 ∈ 𝐼 is a family of above-bounded and geodesic (𝐸,𝐹 )-convex
function on 𝑈 . Then the function 𝑓 : 𝑈 −→ R which is defined as 𝑓(𝜔1) = sup𝑖∈𝐼 𝑓𝑖(𝜔1) is also geodesic
(𝐸,𝐹 )-convex function on 𝑈 .

Proof. For all 𝜔1, 𝜔2 ∈ 𝑈 and 𝑡 ∈ [0, 1], we have

𝑓
(︀
𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡)

)︀
= sup

𝑖
𝑓𝑖

(︀
𝛾𝐸(𝜔1),𝐹 (𝜔2)(𝑡)

)︀
≤ sup

𝑖
(𝑡𝑓𝑖(𝐸(𝜔1)) + (1− 𝑡)𝑓𝑖(𝐹 (𝜔2)))

= 𝑡 sup
𝑖

𝑓𝑖(𝐸(𝜔1)) + (1− 𝑡) sup
𝑖

𝑓𝑖(𝐹 (𝜔2)),

= 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2)).

Hence, 𝑓 is a geodesic (𝐸,𝐹 )-convex function. �

Proposition 4.15. Assume that 𝑓 is geodesic (𝐸,𝐹 )-convex function on 𝑈 and 𝐻 : R −→ R is a non-decreasing
convex function, then 𝐻𝑜𝑓 is a geodesic (𝐸,𝐹 )-convex function on 𝑈 .

Proof. From the assumption

𝑓
(︁
𝛾𝐸(𝜔1),𝐹 (𝜔2)

)︁
≤ 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2)), ∀𝑡 ∈ [0, 1].

Now,
(𝐻𝑜𝑓)

(︁
𝛾𝐸(𝜔1),𝐹 (𝜔2)

)︁
≤ 𝐻𝑜(𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2))), ∀𝑡 ∈ [0, 1].

Since 𝐻 is non-decreasing convex, then

(𝐻𝑜𝑓)
(︁
𝛾𝐸(𝜔1),𝐹 (𝜔2)

)︁
≤ 𝑡(𝐻𝑜𝑓)(𝐸(𝜔1)) + (1− 𝑡)(𝐻𝑜𝑓)(𝐹 (𝜔2)),

that means 𝐻𝑜𝑓 is geodesic (𝐸,𝐹 )-convex function on 𝑈 . �

Theorem 4.16. If 𝑓 : 𝑈 −→ R is a geodesic (𝐸,𝐹 )-convex function on 𝑈 , then the level set 𝐺𝜇 =
{𝜔 : 𝜔 ∈ 𝑈, 𝑓(𝜔) ≤ 𝜇} is geodesic (𝐸,𝐹 )-convex for each 𝜇 ∈ R.

Proof. Since 𝑓 is geodesic (𝐸,𝐹 )-convex function on 𝑈 , for all 𝜔1, 𝜔2 ∈ 𝑈 , we have 𝐸(𝜔1), 𝐹 (𝜔2) ∈ 𝑈

𝑓
(︁
𝛾𝐸(𝜔1),𝐹 (𝜔2)

)︁
≤ 𝑡𝑓(𝐸(𝜔1)) + (1− 𝑡)𝑓(𝐹 (𝜔2)) ≤ 𝑡𝜇 + (1− 𝑡)𝜇 = 𝜇,

this implies that 𝛾𝐸(𝜔1),𝐹 (𝜔2) ⊆ 𝐺𝜇 and 𝐺𝜇 is geodesic (𝐸,𝐹 )-convex set. �

Corollary 4.17. Assume that 𝑓𝑖 : 𝑈 −→ R are geodesic (𝐸,𝐹 )-convex functions on 𝑈 , then the set 𝐺 =
{𝜔 : 𝜔 ∈ 𝑈, 𝑓𝑖(𝜔) ≤ 0,∀𝑖} is geodesic (𝐸,𝐹 )-convex.

The proof of this corollary is directly from Proposition 4.2 and Theorem 4.16.
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5. Conclusions

In this work, geodesic (𝐸,𝐹 )-convex sets and geodesic (𝐸,𝐹 )-functions on Riemannian manifold are intro-
duced. Some properties of this type of convexity are established.
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