Edge open packing sets in graphs
RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3765-3776

In a graph G = (VE), two edges e1 and e2 are said to have a common edge if there exists an edge e ∈ E(G) different from e1 and e2 such that e joins a vertex of e1 to a vertex of e2 in G. That is, 〈e1ee2〉 is either P4 or K3 in G. A non-empty set D ⊆ E(G) is an edge open packing set of a graph G if no two edges of D have a common edge in G. The maximum cardinality of an edge open packing set is the edge open packing number of G and is denoted by ρ e o (G). In this paper, we initiate a study on this parameter.

DOI : 10.1051/ro/2022171
Classification : 05C
Keywords: Injective coloring, 2-edge packing, open packing number
@article{RO_2022__56_5_3765_0,
     author = {Chelladurai, Gayathri and Kalimuthu, Karuppasamy and Soundararajan, Saravanakumar},
     title = {Edge open packing sets in graphs},
     journal = {RAIRO. Operations Research},
     pages = {3765--3776},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/ro/2022171},
     mrnumber = {4503332},
     zbl = {1502.05199},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022171/}
}
TY  - JOUR
AU  - Chelladurai, Gayathri
AU  - Kalimuthu, Karuppasamy
AU  - Soundararajan, Saravanakumar
TI  - Edge open packing sets in graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3765
EP  - 3776
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022171/
DO  - 10.1051/ro/2022171
LA  - en
ID  - RO_2022__56_5_3765_0
ER  - 
%0 Journal Article
%A Chelladurai, Gayathri
%A Kalimuthu, Karuppasamy
%A Soundararajan, Saravanakumar
%T Edge open packing sets in graphs
%J RAIRO. Operations Research
%D 2022
%P 3765-3776
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022171/
%R 10.1051/ro/2022171
%G en
%F RO_2022__56_5_3765_0
Chelladurai, Gayathri; Kalimuthu, Karuppasamy; Soundararajan, Saravanakumar. Edge open packing sets in graphs. RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3765-3776. doi: 10.1051/ro/2022171

[1] S. Arumugam and J. Sithara, Fractional edge domination in graphs. Appl. Anal. Discrete Math. 3 (2009) 359–370. | MR | Zbl | DOI

[2] A. S. Asratian and C. J. Casselgren, On interval edge colorings of ( α , β ) -biregular bipartite graphs. Discrete Math. 307 (2007) 1951–1956. | MR | Zbl | DOI

[3] L. Barenboim, R. Drucker, O. Zatulovsky and E. Levi, Memory allocation for neural networks using graph coloring, in 23rd International Conference on Distributed Computing and Networking (2022) 232–233.

[4] D. M. Cardoso, J. O. Cerdeira, J. P. Cruz and C. Dominic, Injective edge chromatic index of a graph. Preprint: (2015). | arXiv

[5] D. M. Cardoso, J. O. Cerdeira, J. P. Cruz and C. Dominic, Injective edge coloring of graphs. Filomat 33 (2019) 6411–6423. | MR | Zbl | DOI

[6] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th edition. CRC Press, Boca Raton (2005). | MR | Zbl

[7] M. Chellali, T. W. Haynes and L. Volkmann, k -independence stable graphs upon edge removal. Discuss. Math. Graph Theory 30 (2010) 265–274. | MR | Zbl | DOI

[8] P. J. P. Grobler and C. M. Mynhardt, Domination parameters and edge-removal-critical graphs. Discrete Math. 231 (2001) 221–239. | MR | Zbl | DOI

[9] S. Khelifi and M. Chellali, Double domination critical and stable graphs upon vertex removal. Discuss. Math. Graph Theory 32 (2012) 643–657. | MR | Zbl | DOI

[10] S. Khor, Application of graph colouring to biological networks. IET Syst. Biol. 4 (2010) 185–192. | DOI

[11] A. Kostochka, A. Raspaud and J. Xu, Injective edge-coloring of graphs with given maximum degree. Eur. J. Comb. 96 (2021) 103335. | MR | Zbl | DOI

[12] Z. Miao, Y. Song and G. Yu, Note on injective edge-coloring of graphs. Discrete Appl. Math. 310 (2022) 65–74. | MR | Zbl | DOI

[13] G. Raeisi and M. Gholami, Edge coloring of graphs with applications in coding theory. China Commun. 18 (2021) 181–195. | DOI

[14] S. K. Vaidya and N. B. Vyas, Product cordial labeling for alternate snake graphs. Malaya J. Mat. 2 (2014) 188–196. | Zbl | DOI

Cité par Sources :