In a graph G = (V, E), two edges e1 and e2 are said to have a common edge if there exists an edge e ∈ E(G) different from e1 and e2 such that e joins a vertex of e1 to a vertex of e2 in G. That is, 〈e1, e, e2〉 is either P4 or K3 in G. A non-empty set D ⊆ E(G) is an edge open packing set of a graph G if no two edges of D have a common edge in G. The maximum cardinality of an edge open packing set is the edge open packing number of G and is denoted by . In this paper, we initiate a study on this parameter.
Keywords: Injective coloring, 2-edge packing, open packing number
@article{RO_2022__56_5_3765_0,
author = {Chelladurai, Gayathri and Kalimuthu, Karuppasamy and Soundararajan, Saravanakumar},
title = {Edge open packing sets in graphs},
journal = {RAIRO. Operations Research},
pages = {3765--3776},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {5},
doi = {10.1051/ro/2022171},
mrnumber = {4503332},
zbl = {1502.05199},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2022171/}
}
TY - JOUR AU - Chelladurai, Gayathri AU - Kalimuthu, Karuppasamy AU - Soundararajan, Saravanakumar TI - Edge open packing sets in graphs JO - RAIRO. Operations Research PY - 2022 SP - 3765 EP - 3776 VL - 56 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2022171/ DO - 10.1051/ro/2022171 LA - en ID - RO_2022__56_5_3765_0 ER -
%0 Journal Article %A Chelladurai, Gayathri %A Kalimuthu, Karuppasamy %A Soundararajan, Saravanakumar %T Edge open packing sets in graphs %J RAIRO. Operations Research %D 2022 %P 3765-3776 %V 56 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2022171/ %R 10.1051/ro/2022171 %G en %F RO_2022__56_5_3765_0
Chelladurai, Gayathri; Kalimuthu, Karuppasamy; Soundararajan, Saravanakumar. Edge open packing sets in graphs. RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3765-3776. doi: 10.1051/ro/2022171
[1] and , Fractional edge domination in graphs. Appl. Anal. Discrete Math. 3 (2009) 359–370. | MR | Zbl | DOI
[2] and , On interval edge colorings of -biregular bipartite graphs. Discrete Math. 307 (2007) 1951–1956. | MR | Zbl | DOI
[3] , , and , Memory allocation for neural networks using graph coloring, in 23rd International Conference on Distributed Computing and Networking (2022) 232–233.
[4] , , and , Injective edge chromatic index of a graph. Preprint: (2015). | arXiv
[5] , , and , Injective edge coloring of graphs. Filomat 33 (2019) 6411–6423. | MR | Zbl | DOI
[6] and , Graphs and Digraphs, 4th edition. CRC Press, Boca Raton (2005). | MR | Zbl
[7] , and ,-independence stable graphs upon edge removal. Discuss. Math. Graph Theory 30 (2010) 265–274. | MR | Zbl | DOI
[8] and , Domination parameters and edge-removal-critical graphs. Discrete Math. 231 (2001) 221–239. | MR | Zbl | DOI
[9] and , Double domination critical and stable graphs upon vertex removal. Discuss. Math. Graph Theory 32 (2012) 643–657. | MR | Zbl | DOI
[10] , Application of graph colouring to biological networks. IET Syst. Biol. 4 (2010) 185–192. | DOI
[11] , and , Injective edge-coloring of graphs with given maximum degree. Eur. J. Comb. 96 (2021) 103335. | MR | Zbl | DOI
[12] , and , Note on injective edge-coloring of graphs. Discrete Appl. Math. 310 (2022) 65–74. | MR | Zbl | DOI
[13] and , Edge coloring of graphs with applications in coding theory. China Commun. 18 (2021) 181–195. | DOI
[14] and , Product cordial labeling for alternate snake graphs. Malaya J. Mat. 2 (2014) 188–196. | Zbl | DOI
Cité par Sources :





